scispace - formally typeset
Search or ask a question
Topic

Return loss

About: Return loss is a research topic. Over the lifetime, 11090 publications have been published within this topic receiving 97603 citations.


Papers
More filters
Journal ArticleDOI
09 Feb 2003
TL;DR: In this article, a broadband technique using monolithic T-coils is applied to electrostatic discharge (ESD) structures for both input and output pads, which achieve operation at 10 Gb/s while providing a return loss of -20 dB at 10 GHz.
Abstract: A broadband technique using monolithic T-coils is applied to electrostatic discharge (ESD) structures for both input and output pads. Fabricated in 0.18-/spl mu/m CMOS technology, the prototypes achieve operation at 10 Gb/s while providing a return loss of -20 dB at 10 GHz. The human-body model tolerance is 1000 V for the input structure and 800-900 V for the output structure.

180 citations

Journal ArticleDOI
TL;DR: In this paper, a 2.45 GHz rectifying antenna (rectenna) using a compact dual circularly polarized (DCP) patch antenna with an RF-dc power conversion part is presented.
Abstract: A 2.45-GHz rectifying antenna (rectenna) using a compact dual circularly polarized (DCP) patch antenna with an RF-dc power conversion part is presented. The DCP antenna is coupled to a microstrip line by an aperture in the ground plane and includes a bandpass filter for harmonic rejections. It exhibits a measured bandwidth of 2100 MHz (10 dB return loss) and a 705-MHz CP bandwidth (3 dB axial ratio). The maximum efficiency and dc voltage are respectively equal to 63% and 2.82 V over a resistive load of 1600 Ω for a power density of 0.525 mW/cm2.

178 citations

Journal ArticleDOI
TL;DR: In this paper, a low-loss radio frequency (RF) microelectromechanical (MEMS) 4-bit X-band monolithic phase shifter is presented.
Abstract: In this work, development of a low-loss radio frequency (RF) microelectromechanical (MEMS) 4-bit X-band monolithic phase shifter is presented. These microstrip circuits are fabricated on 0.021-in-thick high-resistivity silicon and are based on a reflection topology using 3-dB Lange couplers. The average insertion loss of the circuit is 1.4 dB with the return loss >11 dB at 8 GHz. To the best of our knowledge, this is a lowest reported loss for X-band phase shifter and promises to greatly reduce the cost of designing and building phase arrays.

177 citations

Journal ArticleDOI
TL;DR: In this paper, a new technique for the design of ultra-wide bandpass filters with spurious suppression over a very wide band is presented, which consists on the combination of a well-known analytical design approach to achieve wide bandwidths with an electromagnetic bandgap structure, which is fundamental for spurious suppression.
Abstract: In this study, a new technique for the design of ultra-wide bandpass filters with spurious suppression over a very wide band is presented. The method consists on the combination of a well-known analytical design approach to achieve wide bandwidths with an electromagnetic bandgap structure, which is fundamental for spurious suppression. To illustrate the technique, a microstrip of ultra-wide bandpass filter centered at 3.4 GHz with a bandwidth covering 4.8 GHz is implemented in an Arlon substrate (permittivity epsivr=2.4, thickness h=0.675 mm). Measured filter characteristics are good with in-band insertion losses below 0.90 dB and return losses better than 10 dB. Out-of-band performance is also good with spurious passband attenuation higher than 30 dB up to at least 20 GHz

172 citations

Journal ArticleDOI
TL;DR: In this paper, a dual polarized ultrawide-band (UWB) feed with a decade bandwidth was presented for use in both single and dual reflector antennas, which has nearly constant beam width and 11 dBi directivity.
Abstract: A novel dual polarized ultrawide-band (UWB) feed with a decade bandwidth is presented for use in both single and dual reflector antennas. The feed has nearly constant beam width and 11 dBi directivity over at least a decade bandwidth. The feed gives an aperture efficiency of the reflector of 66% or better over a decade bandwidth when the subtended angle toward the sub or main reflector is about 53/spl deg/, and an overall efficiency better than 47% including mismatch. The return loss is better than 5 dB over a decade bandwidth. The calculated results have been verified with measurements on a linearly polarized lab model. The feed has no balun as it is intended to be integrated with an active 180/spl deg/ balun and receiver. The feed is referred to as the Eleven antenna because its basic configuration is two parallel dipoles 0.5 wavelengths apart and because it can be used over more than a decade bandwidth with 11 dBi directivity. We also believe that 11 dB return loss is achievable in the near future.

169 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
92% related
Amplifier
163.9K papers, 1.3M citations
82% related
Wireless
133.4K papers, 1.9M citations
81% related
Resonator
76.5K papers, 1M citations
81% related
Waveguide (optics)
44.9K papers, 618.9K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023285
2022837
2021601
2020738
2019970
2018994