Topic
Reverse osmosis
About: Reverse osmosis is a(n) research topic. Over the lifetime, 20780 publication(s) have been published within this topic receiving 299185 citation(s). The topic is also known as: RO.
Papers published on a yearly basis
Papers
More filters
Book•
16 Dec 1999
TL;DR: Overview of membrane science and technology membrane transport theory membrane and modules concentration polarization reverse osmosis ultrafiltration microfiltration gas separation pervaporation ion exchange membrane processes - electrodialysis carrier facilitated transport medical applications of membranes other membranes processed.
Abstract: Overview of membrane science and technology membrane transport theory membrane and modules concentration polarization reverse osmosis ultrafiltration microfiltration gas separation pervaporation ion exchange membrane processes - electrodialysis carrier facilitated transport medical applications of membranes other membranes processed.
3,548 citations
TL;DR: Key parameters of an RO process and process modifications due to feed water characteristics are brought to light by a direct comparison of seawater and brackish water RO systems.
Abstract: Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.
2,296 citations
TL;DR: In this paper, the state-of-the-art of the physical principles and applications of forward osmosis as well as their strengths and limitations are presented, along with a review of the current state of the art.
Abstract: Osmosis is a physical phenomenon that has been extensively studied by scientists in various disciplines of science and engineering. Early researchers studied the mechanism of osmosis through natural materials, and from the 1960s, special attention has been given to osmosis through synthetic materials. Following the progress in membrane science in the last few decades, especially for reverse osmosis applications, the interests in engineered applications of osmosis has been spurred. Osmosis, or as it is currently referred to as forward osmosis, has new applications in separation processes for wastewater treatment, food processing, and seawater/brackish water desalination. Other unique areas of forward osmosis research include pressure-retarded osmosis for generation of electricity from saline and fresh water and implantable osmotic pumps for controlled drug release. This paper provides the state-of-the-art of the physical principles and applications of forward osmosis as well as their strengths and limitations.
2,017 citations
TL;DR: A review of the field of thin film composite reverse osmosis membranes, with emphasis on the chemistry and composition of these membranes, is given in this article, with particular attention given to composite membranes that have found commercial use, whether in the present or past.
Abstract: This is a review of the field of thin film composite reverse osmosis membranes, with emphasis on the chemistry and composition of these membranes. Particular attention is given to composite membranes that have found commercial use, whether in the present or past. Applications of composite reverse osmosis membranes in actual separation is only briefly treated
1,506 citations
TL;DR: The most commonly used desalination technologies are reverse osmosis (RO) and thermal processes such as multi-stage flash (MSF) and multi-effect distillation (MED) as mentioned in this paper.
Abstract: Throughout the world, water scarcity is being recognised as a present or future threat to human activity and as a consequence, a definite trend to develop alternative water resources such as desalination can be observed. The most commonly used desalination technologies are reverse osmosis (RO) and thermal processes such as multi-stage flash (MSF) and multi-effect distillation (MED). In Europe, reverse osmosis, due to its lower energy consumption has gained much wider acceptance than its thermal alternatives. This review summarises the current state-of-the art of reverse osmosis desalination, dealing not only with the reverse osmosis stage, but with the entire process from raw water intake to post treatment of product water. The discussion of process fundamentals, membranes and membrane modules and of current and future developments in membrane technology is accompanied by an analysis of operational issues as fouling and scaling and of measures for their prevention such as adequate cleaning procedures and antiscalant use. Special focus is placed on pre-treatment of raw water and post-treatment of brine as well as of product water to meet drinking and irrigation water standards, including evaluation of current boron removal options. Energy requirements of reverse osmosis plants as well as currently applied energy recovery systems for reduction of energy consumption are described and cost and cost structure of reverse osmosis desalination are outlined. Finally, current practices of waste management and disposal as well as new trends such as the use of hybrid plants, i.e. combining reverse osmosis with thermal processes and/or power generation are addressed.
1,505 citations