scispace - formally typeset
Search or ask a question
Topic

Reverse osmosis

About: Reverse osmosis is a research topic. Over the lifetime, 20780 publications have been published within this topic receiving 299185 citations. The topic is also known as: RO.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a feasibility study of water desalination in remote areas of Egypt using photovoltaic energy as the primary source of energy is presented, where the availability of water resources and solar energy in these areas has been investigated.

103 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that water for reuse could be produced from low-contaminated process water streams from food processing companies by a specific treatment using membrane processes while achieving reduction of water consumption and wastewater quantities.

103 citations

Journal ArticleDOI
01 Jul 2016
TL;DR: To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale, and refined economics assessment is expected to integrate fouled and other maintenance costs/savings of the FO/PAO- RO hybrid systems.
Abstract: Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

103 citations

Journal ArticleDOI
TL;DR: In this paper, the optimal design of RO desalination system considering membrane cleaning and replacing during the 5-year maintenance period, and only a single stage configuration with pressure exchanger is analyzed.

103 citations

Journal ArticleDOI
TL;DR: This study uses molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations and finds that salt rejection is highly dependent on the applied hydrostatic pressure.
Abstract: Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and desalination, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for desalination applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in desalination by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities.

103 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
86% related
Sorption
45.8K papers, 1.3M citations
78% related
Adsorption
226.4K papers, 5.9M citations
78% related
Aqueous solution
189.5K papers, 3.4M citations
74% related
Photocatalysis
67K papers, 2.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023553
20221,099
2021636
2020782
20191,087
20181,331