scispace - formally typeset
Search or ask a question
Topic

Reverse osmosis

About: Reverse osmosis is a research topic. Over the lifetime, 20780 publications have been published within this topic receiving 299185 citations. The topic is also known as: RO.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent advances in reverse osmosis technology as related to the major issues of concern in this rapidly growing desalination method is presented in this article, where a summary of the major advances in RO performance and mechanism modeling is also presented and available transport models are introduced.

560 citations

Journal ArticleDOI
TL;DR: Forward osmosis (FO) is a membrane treatment process that was investigated at bench scale to determine its feasibility to concentrate centrate under both batch and continuous operating conditions, and results demonstrated that high water flux and high nutrient rejection could be achieved.

559 citations

Journal ArticleDOI
TL;DR: In this paper, the causes, consequences and control of biofouling in RO membranes used for seawater desalination are discussed in some detail: biofilm formation, role of EPS, and sequence of events leading to bio fouling.

543 citations

Patent
22 Feb 1979
TL;DR: Good salt rejection and flux characteristics can be obtained with reverse osmosis membranes made from crosslinked, interfacially polymerized aromatic polyamides, particularly poly(arylenepolyamine aromatic polycarboxylamides) such as poly(phenylenediamine trimesamide) as discussed by the authors.
Abstract: Good salt rejection and flux characteristics can be obtained with reverse osmosis membranes made from crosslinked, interfacially polymerized aromatic polyamides, particularly poly(arylenepolyamine aromaticpolycarboxylamides) such as poly(phenylenediamine trimesamide). The aromatic polyamides are preferably synthesized directly from an essentially monomeric polyacyl halide (at least tri- or higher in acyl functionality) and an essentially monomeric arylene polyamine with a measurable water solubility. As compared to closely analogous linear polymers, these interfacially polymerized, crosslinked polyamides have a lower % elongation and lower solubility (e.g. in amide solvents). Chlorine resistance characteristics of these polyamides are also good and can be improved by treatment with a chlorinating agent. In the preferred practice of the method for making a reverse osmosis membrane, a porous support layer is coated with the polyamine component (e.g. an aqueous solution of phenylene diamine); the thus-coated support is contacted with the polyacyl halide component (e.g. trimesoyl chloride), thereby initiating the interfacial polymerization in situ on the support; and the resulting product is dried to provide a composite membrane comprising the polyamide laminated to the porous support.

537 citations

Journal ArticleDOI
TL;DR: It is likely that limitations in fluid mechanics and mass transfer will define the upper bounds of membrane performance, with RO remaining as the key to desalination and reclamation, with other membrane processes growing in support and in niche areas.
Abstract: Membrane technology offers the best options to "drought proof" mankind on an increasingly thirsty planet by purifying seawater or used (waste) water. Although desalination by reverse osmosis (RO) and wastewater treatment by membrane bioreactors are well established the various membrane technologies still need to be significantly improved in terms of separation properties, energy demand and costs. We can now define the ideal characteristics of membranes and advances in material science and novel chemistries are leading to increasingly effective membranes. However developments in membranes must be matched by improved device design and membrane engineering. It is likely that limitations in fluid mechanics and mass transfer will define the upper bounds of membrane performance. Nevertheless major advances and growth over the next 20 years can be anticipated with RO remaining as the key to desalination and reclamation, with other membrane processes growing in support and in niche areas.

530 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
86% related
Sorption
45.8K papers, 1.3M citations
78% related
Adsorption
226.4K papers, 5.9M citations
78% related
Aqueous solution
189.5K papers, 3.4M citations
74% related
Photocatalysis
67K papers, 2.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023553
20221,099
2021636
2020782
20191,087
20181,331