Topic

# Reverse short-channel effect

About: Reverse short-channel effect is a research topic. Over the lifetime, 863 publications have been published within this topic receiving 15698 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: In this paper, a 3D simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFETs is presented.

Abstract: A three-dimensional (3-D) "atomistic" simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFETs is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFETs. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFETs was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant position.

685 citations

••

[...]

TL;DR: In this article, the threshold voltage, V/sub th/, of lightly doped drain (LDD) and non-LDD MOSFETs with effective channel lengths down to the deep submicrometer range has been investigated.

Abstract: The threshold voltage, V/sub th/, of lightly doped drain (LDD) and non-LDD MOSFETs with effective channel lengths down to the deep-submicrometer range has been investigated. Experimental data show that in the very-short-channel-length range, the previously reported exponential dependence on channel length and the linear dependence on drain voltage no longer hold true. A simple quasi-two-dimensional model is used, taking into account the effects of gate oxide thickness, source/drain junction depth, and channel doping, to describe the accelerated V/sub th/ on channel length due to their lower drain-substrate junction built-in potentials. LDD devices also show less V/sub th/ dependence on drain voltage because the LDD region reduces the effective drain voltage. Based on consideration of the short-channel effects, the minimum acceptable length is determined. >

451 citations

••

[...]

Bell Labs

^{1}TL;DR: A simple expression for the threshold voltage of an IGFET is derived from a charge conservation principle which geometrically takes into account two-dimensional edge effects in this paper, which is valid for short and long-channel lengths.

Abstract: A simple expression for the threshold voltage of an IGFET is derived from a charge conservation principle which geometrically takes into account two-dimensional edge effects. The expression is derived for zero drain voltage and is valid for short and long-channel lengths. The dependence of the threshold voltage on the source and drain diffusion depth, r j , and channel length, L , is explicitly given. In the limit, L / r j → ∞, the threshold voltage equation reduces to the familiar expression for the long-channel case. The theory is compared with the measured threshold voltages on IGFET's fabricated with 1·4, 3·8 and 7·4 μm channel lengths. The dependence of the threshold voltage under backgate bias voltages ranging from zero to breakdown agrees closely with the theory.

370 citations

••

[...]

IBM

^{1}TL;DR: In this paper, an experimental and modeling study of charge trapping related threshold voltage shifts in Al2O3 and HfO2 n-type field effect transistors (nFET) is reported.

Abstract: An experimental and modeling study of charge trapping related threshold voltage shifts in Al2O3 and HfO2 n-type field effect transistors (nFET) is reported. The dependence of threshold voltage, subthreshold slope, and gate leakage currents on stressing time and injected charge carrier density are investigated as a function positive bias stress voltage and temperature. Based on experimental data, a model for trapping of charges in the existing traps is developed. The model is similar to SiO2 charge trapping models with one exception. Unlike SiO2 models, the model assumes a continuous distribution in trapping capture cross sections. The model predicts that threshold voltage would increase with a power law dependence on stressing time and injected charge carrier density (Ninj) in the initial stages of stressing. The model calculates threshold voltage shifts as a function of stress time and Ninj, thereby provides estimates of threshold voltage shifts after 10 years lifetime. It also provides insights into the...

285 citations

•

[...]

16 Sep 1997

TL;DR: Linearly patterned or dot-patterned impurity regions are formed in a channel forming region 103 so as to be generally parallel with the channel direction as discussed by the authors, which suppress expansion of a drain-side depletion layer, so that the punch-through phenomenon can be prevented.

Abstract: A fine semiconductor device having a short channel length while suppressing a short channel effect. Linearly patterned or dot-patterned impurity regions 104 are formed in a channel forming region 103 so as to be generally parallel with the channel direction. The impurity regions 104 are effective in suppressing the short channel effects. More specifically, the impurity regions 104 suppress expansion of a drain-side depletion layer, so that the punch-through phenomenon can be prevented. Further, the impurity regions cause a narrow channel effect, so that reduction in threshold voltage can be lessened.

241 citations