scispace - formally typeset
Search or ask a question
Topic

Reversible-jump Markov chain Monte Carlo

About: Reversible-jump Markov chain Monte Carlo is a research topic. Over the lifetime, 630 publications have been published within this topic receiving 30304 citations. The topic is also known as: RJMCMC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors propose a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of differing dimensionality, which is flexible and entirely constructive.
Abstract: Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some fixed standard underlying measure. They have therefore not been available for application to Bayesian model determination, where the dimensionality of the parameter vector is typically not fixed. This paper proposes a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of differing dimensionality, which is flexible and entirely constructive. It should therefore have wide applicability in model determination problems. The methodology is illustrated with applications to multiple change-point analysis in one and two dimensions, and to a Bayesian comparison of binomial experiments.

6,188 citations

BookDOI
10 May 2011
TL;DR: A Markov chain Monte Carlo based analysis of a multilevel model for functional MRI data and its applications in environmental epidemiology, educational research, and fisheries science are studied.
Abstract: Foreword Stephen P. Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng Introduction to MCMC, Charles J. Geyer A short history of Markov chain Monte Carlo: Subjective recollections from in-complete data, Christian Robert and George Casella Reversible jump Markov chain Monte Carlo, Yanan Fan and Scott A. Sisson Optimal proposal distributions and adaptive MCMC, Jeffrey S. Rosenthal MCMC using Hamiltonian dynamics, Radford M. Neal Inference and Monitoring Convergence, Andrew Gelman and Kenneth Shirley Implementing MCMC: Estimating with confidence, James M. Flegal and Galin L. Jones Perfection within reach: Exact MCMC sampling, Radu V. Craiu and Xiao-Li Meng Spatial point processes, Mark Huber The data augmentation algorithm: Theory and methodology, James P. Hobert Importance sampling, simulated tempering and umbrella sampling, Charles J.Geyer Likelihood-free Markov chain Monte Carlo, Scott A. Sisson and Yanan Fan MCMC in the analysis of genetic data on related individuals, Elizabeth Thompson A Markov chain Monte Carlo based analysis of a multilevel model for functional MRI data, Brian Caffo, DuBois Bowman, Lynn Eberly, and Susan Spear Bassett Partially collapsed Gibbs sampling & path-adaptive Metropolis-Hastings in high-energy astrophysics, David van Dyk and Taeyoung Park Posterior exploration for computationally intensive forward models, Dave Higdon, C. Shane Reese, J. David Moulton, Jasper A. Vrugt and Colin Fox Statistical ecology, Ruth King Gaussian random field models for spatial data, Murali Haran Modeling preference changes via a hidden Markov item response theory model, Jong Hee Park Parallel Bayesian MCMC imputation for multiple distributed lag models: A case study in environmental epidemiology, Brian Caffo, Roger Peng, Francesca Dominici, Thomas A. Louis, and Scott Zeger MCMC for state space models, Paul Fearnhead MCMC in educational research, Roy Levy, Robert J. Mislevy, and John T. Behrens Applications of MCMC in fisheries science, Russell B. Millar Model comparison and simulation for hierarchical models: analyzing rural-urban migration in Thailand, Filiz Garip and Bruce Western

2,415 citations

Journal ArticleDOI
TL;DR: In this paper, a hierarchical prior model is proposed to deal with weak prior information while avoiding the mathematical pitfalls of using improper priors in the mixture context, which can be used as a basis for a thorough presentation of many aspects of the posterior distribution.
Abstract: New methodology for fully Bayesian mixture analysis is developed, making use of reversible jump Markov chain Monte Carlo methods that are capable of jumping between the parameter subspaces corresponding to different numbers of components in the mixture A sample from the full joint distribution of all unknown variables is thereby generated, and this can be used as a basis for a thorough presentation of many aspects of the posterior distribution The methodology is applied here to the analysis of univariate normal mixtures, using a hierarchical prior model that offers an approach to dealing with weak prior information while avoiding the mathematical pitfalls of using improper priors in the mixture context

2,018 citations

Book
08 Aug 2006
TL;DR: This book should help newcomers to the field to understand how finite mixture and Markov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated.
Abstract: WINNER OF THE 2007 DEGROOT PRIZE! The prominence of finite mixture modelling is greater than ever. Many important statistical topics like clustering data, outlier treatment, or dealing with unobserved heterogeneity involve finite mixture models in some way or other. The area of potential applications goes beyond simple data analysis and extends to regression analysis and to non-linear time series analysis using Markov switching models. For more than the hundred years since Karl Pearson showed in 1894 how to estimate the five parameters of a mixture of two normal distributions using the method of moments, statistical inference for finite mixture models has been a challenge to everybody who deals with them. In the past ten years, very powerful computational tools emerged for dealing with these models which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book reviews these techniques and covers the most recent advances in the field, among them bridge sampling techniques and reversible jump Markov chain Monte Carlo methods. It is the first time that the Bayesian perspective of finite mixture modelling is systematically presented in book form. It is argued that the Bayesian approach provides much insight in this context and is easily implemented in practice. Although the main focus is on Bayesian inference, the author reviews several frequentist techniques, especially selecting the number of components of a finite mixture model, and discusses some of their shortcomings compared to the Bayesian approach. The aim of this book is to impart the finite mixture and Markov switching approach to statistical modelling to a wide-ranging community. This includes not only statisticians, but also biologists, economists, engineers, financial agents, market researcher, medical researchers or any other frequent user of statistical models. This book should help newcomers to the field to understand how finite mixture and Markov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated. Researchers familiar with the subject also will profit from reading this book. The presentation is rather informal without abandoning mathematical correctness. Previous notions of Bayesian inference and Monte Carlo simulation are useful but not needed.

1,642 citations

01 Jan 1997
TL;DR: In this article, a hierarchical prior model is used to deal with weak prior information while avoiding the mathematical pitfalls of using improper priors in the mixture context, and a sample from the full joint distribution of all unknown variables is generated, and this can be used as a basis for a thorough presentation of many aspects of the posterior distribution.
Abstract: SUMMARY New methodology for fully Bayesian mixture analysis is developed, making use of reversible jump Markov chain Monte Carlo methods that are capable of jumping between the parameter subspaces corresponding to different numbers of components in the mixture. A sample from the full joint distribution of all unknown variables is thereby generated, and this can be used as a basis for a thorough presentation of many aspects of the posterior distribution. The methodology is applied here to the analysis of univariate normal mixtures, using a hierarchical prior model that offers an approach to dealing with weak prior information while avoiding the mathematical pitfalls of using improper priors in the mixture context.

1,229 citations


Network Information
Related Topics (5)
Estimator
97.3K papers, 2.6M citations
82% related
Inference
36.8K papers, 1.3M citations
82% related
Markov chain
51.9K papers, 1.3M citations
76% related
Probability distribution
40.9K papers, 1.1M citations
74% related
Regression analysis
31K papers, 1.7M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202224
202112
202018
201930
201824