scispace - formally typeset
Search or ask a question
Topic

Reynolds number

About: Reynolds number is a research topic. Over the lifetime, 68440 publications have been published within this topic receiving 1666116 citations.


Papers
More filters
Book
01 Jan 1955
TL;DR: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part, denoted as turbulence as discussed by the authors, and the actual flow is very different from that of the Poiseuille flow.
Abstract: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one ob~erves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

17,321 citations

Book
01 Jan 1967
TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Abstract: Preface Conventions and notation 1. The physical properties of fluids 2. Kinematics of the flow field 3. Equations governing the motion of a fluid 4. Flow of a uniform incompressible viscous fluid 5. Flow at large Reynolds number: effects of viscosity 6. Irrotational flow theory and its applications 7. Flow of effectively inviscid liquid with vorticity Appendices.

11,187 citations

Book
01 Jan 1965
TL;DR: Low Reynolds number flow theory finds wide application in such diverse fields as sedimentation, fluidization, particle-size classification, dust and mist collection, filtration, centrifugation, polymer and suspension rheology, and a host of other disciplines.
Abstract: Low Reynolds number flow theory finds wide application in such diverse fields as sedimentation, fluidization, particle-size classification, dust and mist collection, filtration, centrifugation, polymer and suspension rheology, flow through porous media, colloid science, aerosol and hydrosal technology, lubrication theory, blood flow, Brownian motion, geophysics, meteorology, and a host of other disciplines. This text provides a comprehensive and detailed account of the physical and mathematical principles underlying such phenomena, heretofore available only in the original literature.

4,648 citations

Journal ArticleDOI
TL;DR: In this article, a new k -ϵ eddy viscosity model, which consists of a new model dissipation rate equation and a new realizable eddy viscous formulation, is proposed.

4,648 citations

Journal ArticleDOI
TL;DR: In this article, the local turbulent viscosity is determined from the solution of transport equations for the turbulence kinetic energy and the energy dissipation rate, and the predicted hydrodynamic and heat-transfer development of the boundary layers is in close agreement with the measured behaviour.

3,999 citations


Network Information
Related Topics (5)
Laminar flow
56K papers, 1.2M citations
95% related
Turbulence
112.1K papers, 2.7M citations
94% related
Boundary layer
64.9K papers, 1.4M citations
93% related
Heat transfer
181.7K papers, 2.9M citations
91% related
Vortex
72.3K papers, 1.3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,529
20224,885
20212,896
20202,802
20192,887
20182,751