scispace - formally typeset
Search or ask a question

Showing papers on "Reynolds number published in 2010"


Journal ArticleDOI
TL;DR: In this paper, statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared, and the resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer.
Abstract: Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.

752 citations


Journal ArticleDOI
TL;DR: The current understanding of the flow around two infinite circular cylinders of equal diameter immersed in a steady cross-flow, with a focus on the near-wake flow patterns, Reynolds number effects, intermediate wake structure and behaviour, and the general trends in the measurements of the aerodynamic force coefficients and Strouhal numbers are reviewed in this paper.

630 citations


Journal ArticleDOI
TL;DR: In this paper, a high-speed video imaging system was used to study the motion of bed load particles under steady and spatially uniform turbulent flow above a flat sediment bed of uniform grain size.
Abstract: [1] We report an experimental investigation of the motion of bed load particles under steady and spatially uniform turbulent flow above a flat sediment bed of uniform grain size. Using a high-speed video imaging system, we recorded the trajectories of the moving particles and measured their velocity and the length and duration of their flights, as well as the surface density of the moving particles. Our observations show that entrained particles exhibit intermittent motion composed of the succession of periods of “flight” and periods of rest. During one flight, a particle may go through phases of reptation, during which it moves in nearly persistent contact with the rough bed, and phases of saltation, during which it travels sufficiently high above the bed to reach high velocities. The distributions of longitudinal and transverse particle velocities obey a decreasing exponential and a Gaussian law, respectively. Interestingly, these observations are similar to those previously reported for viscous flows. The experimental results presented here support the erosion-deposition model of Charru (2006) and allow the calibration of the involved coefficients. In particular, noting τ*, the Shields number, and τ*c, the threshold Shields number, we find that (1) the surface density of moving particles increases linearly with τ* − τ*c; (2) the average particle velocity increases linearly with τ*1/2 − τ*c1/2, with a finite nonzero value at the threshold; (3) the flight duration scales with a characteristic settling time with no significant dependence on either τ* or the settling Reynolds number; and (4) the flight length increases linearly with τ*1/2 − τ*c1/2. The results presented in this paper should provide a valuable physical framework to describe bed form development in turbulent flows.

375 citations


Journal ArticleDOI
TL;DR: In this article, the authors explore some aspects of energy harvesting from unsteady, turbulent fluid flow using piezoelectric generators, where the authors use a three-way coupled interaction simulation that takes into account the aerodynamics, structural vibration, and electrical response of the generator.
Abstract: In the present work we explore some aspects of energy harvesting from unsteady, turbulent fluid flow using piezoelectric generators. Turbulent flows exhibit a large degree of coherence in their spatial and temporal scales, which provides a unique opportunity for energy harvesting. The voltage generated by short, flexible piezoelectric cantilever beams placed inside turbulent boundary layers and wakes of circular cylinders at high Reynolds numbers is investigated. Matching the fluid flow's predominant frequency with the natural frequency of the piezoelectric generator appears to maximize the piezoelectric output voltage. This voltage is also dependent on the generator's location inside the flow field. A three-way coupled interaction simulation that takes into account the aerodynamics, structural vibration, and electrical response of the piezoelectric generator has been developed. The simulation results agree reasonably well with the experimental data paving the way of using such a tool to estimate the performance of different energy harvesting devices within unsteady flow fields.

338 citations


Journal ArticleDOI
TL;DR: In this article, the velocity and pressure fluctuations in the outer layers of wall-bounded turbulent flows are analyzed by comparing a new simulation of the zero-pressure-gradient boundary layer with older simulations of channels.
Abstract: The behaviour of the velocity and pressure fluctuations in the outer layers of wall-bounded turbulent flows is analysed by comparing a new simulation of the zero-pressure-gradient boundary layer with older simulations of channels. The 99 % boundary-layer thickness is used as a reasonable analogue of the channel half-width, but the two flows are found to be too different for the analogy to be complete. In agreement with previous results, it is found that the fluctuations of the transverse velocities and of the pressure are stronger in the boundary layer, and this is traced to the pressure fluctuations induced in the outer intermittent layer by the differences between the potential and rotational flow regions. The same effect is also shown to be responsible for the stronger wake component of the mean velocity profile in external flows, whose increased energy production is the ultimate reason for the stronger fluctuations. Contrary to some previous results by our group, and by others, the streamwise velocity fluctuations are also found to be higher in boundary layers, although the effect is weaker. Within the limitations of the non-parallel nature of the boundary layer, the wall-parallel scales of all the fluctuations are similar in both the flows, suggesting that the scale-selection mechanism resides just below the intermittent region, y/δ = 0.3–0.5. This is also the location of the largest differences in the intensities, although the limited Reynolds number of the boundary-layer simulation (Reθ ≈ 2000) prevents firm conclusions on the scaling of this location. The statistics of the new boundary layer are available from http://torroja.dmt.upm.es/ftp/blayers/.

322 citations


Journal ArticleDOI
TL;DR: In this paper, a 2D computational investigation on the dynamic stall phenomenon associated with unsteady oscillations around the NACA0012 airfoil at low Reynolds number is presented, where two sets of oscillating patterns with different frequencies, mean oscillating angles and amplitudes are numerically simulated using Computational Fluid Dynamics.

319 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed comparison of mixing efficiency of different mixers that have been characterized by the Villermaux/Dushman test reaction is presented, and it is shown how to obtain the theoretical mixing time and how to relate it with operating parameters as the Reynolds number of the flow and the specific power dissipation per mass unit of fluid.

284 citations


Journal ArticleDOI
TL;DR: A new unified family of arbitrary high order accurate explicit one-step finite volume and discontinuous Galerkin schemes on unstructured triangular and tetrahedral meshes for the solution of the compressible Navier–Stokes equations is proposed.

282 citations


Journal ArticleDOI
TL;DR: In this article, the authors combine NURBS-based isogeometric analysis, residual-driven turbulence modeling and weak imposition of no-slip and no-penetration Dirichlet boundary conditions on unstretched meshes to compute wall-bounded turbulent flows.

279 citations


Journal ArticleDOI
TL;DR: In this article, a numerical investigation of laminar mixed convection flows through a copper-water nanofluid in a square lid-driven cavity has been executed, where the top and bottom horizontal walls are insulated while the vertical walls are maintained at constant but different temperatures.

277 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of the nozzle-exit conditions on the flow and sound fields of initially laminar jets are computed by large-eddy simulations (LES) to investigate the effects.
Abstract: Round jets originating from a pipe nozzle are computed by large-eddy simulations (LES) to investigate the effects of the nozzle-exit conditions on the flow and sound fields of initially laminar jets. The jets are at Mach number 0.9 and Reynolds number 105, and exhibit exit boundary layers characterized by Blasius velocity profiles, maximum root-mean-square (r.m.s.) axial velocity fluctuations between 0.2 and 1.9% of the jet velocity, and momentum thicknesses varying from 0.003 to 0.023 times the jet radius. The far-field noise is determined from the LES data on a cylindrical surface by solving the acoustic equations. Jets with a thinner boundary layer develop earlier but at a slower rate, yielding longer potential cores and lower centreline turbulent intensities. Adding random pressure disturbances of low magnitude in the nozzle also increases the potential core length and reduces peak r.m.s. radial velocity fluctuations in the shear layer. In all the jets, the shear-layer transition is dominated by vortex rolling-ups and pairings, which generate strong additional acoustic components, but also amplify the downstream-dominant low-frequency noise component when the exit boundary layer is thick. The introduction of inlet noise however results in weaker pairings, thus spectacularly reducing their contributions to the sound field. This high sensitivity to the initial conditions is in good agreement with experimental observations.

Journal ArticleDOI
TL;DR: The realization of an effective pumping device that mimics a ciliated surface and imitates its motion to generate fluid flow is reported on, proving the concept by measuring the velocity of a cilia-pumped fluid as a function of height above the ciliatedsurface.
Abstract: Due to their small dimensions, microfluidic devices operate in the low Reynolds number regime. In this case, the hydrodynamics is governed by the viscosity rather than inertia and special elements have to be introduced into the system for mixing and pumping of fluids. Here we report on the realization of an effective pumping device that mimics a ciliated surface and imitates its motion to generate fluid flow. The artificial biomimetic cilia are constructed as long chains of spherical superparamagnetic particles, which self-assemble in an external magnetic field. Magnetic field is also used to actuate the cilia in a simple nonreciprocal manner, resulting in a fluid flow. We prove the concept by measuring the velocity of a cilia-pumped fluid as a function of height above the ciliated surface and investigate the influence of the beating asymmetry on the pumping performance. A numerical simulation was carried out that successfully reproduced the experimentally obtained data.

Journal ArticleDOI
TL;DR: In this paper, the thermophysical properties of Al2O3 nanofluid have been determined through experiments at different volume concentrations and temperatures and validated through experiments in the Reynolds number range of 10,000-22,000 with tapes of different twist ratios.

Journal ArticleDOI
TL;DR: Tezduyar et al. as mentioned in this paper showed that using the element vector-based definition of stabilization parameters circumvents the well-known instability associated with conventional stabilized formulations at small time steps.

Journal ArticleDOI
TL;DR: In this article, a laminar flow convective heat transfer and friction factor characteristics of Al2O3/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented.

Journal ArticleDOI
TL;DR: The localized artificial diffusivity method is investigated in the context of large-eddy simulation of compressible turbulent flows and the proposed combination of Ducros-type sensor with a negative dilatation sensor removes unnecessary bulk viscosity within expansion and weakly compressible turbulence regions without shocks and allows it to localize near the shocks.

Journal ArticleDOI
TL;DR: In this paper, the authors study turbulence generated by low-blockage space-filling fractal square grids and show that the small scales are not universal beyond small corrections caused by intermittency, finite Reynolds number and anisotropy.
Abstract: We study turbulence generated by low-blockage space-filling fractal square grids [5]. This device creates a multiscale excitation of the fluid flow. Such devices have been proposed as alternative and complementary tools for the investigation of turbulence fundamentals, modelling and applications [3, 5, 6]. New insights on the fundamentals of homogeneous turbulence have been found, showing in particular that the small scales are not universal beyond small corrections caused by intermittency, finite Reynolds number and anisotropy. The unprecedented possibilities offered by these devices also open new attractive perspectives in applications involving mixing, combustion and flow management and control.

Journal ArticleDOI
TL;DR: In this paper, a direct numerical simulation of channel flow with rough walls comprising staggered arrays of cubes having various plan area densities is presented and discussed, and it is shown that the surface drag is predominantly form drag, which is greatest at an area coverage around 15%, the height variation of the axial pressure force across the obstacles weakens significantly as the area coverage decreases, but is always largest near the top of the obstacles.
Abstract: Computations of channel flow with rough walls comprising staggered arrays of cubes having various plan area densities are presented and discussed. The cube height h is 12.5% of the channel half-depth and Reynolds numbers (u? h/?) are typically around 700 – well into the fully rough regime. A direct numerical simulation technique, using an immersed boundary method for the obstacles, was employed with typically 35 million cells. It is shown that the surface drag is predominantly form drag, which is greatest at an area coverage around 15%. The height variation of the axial pressure force across the obstacles weakens significantly as the area coverage decreases, but is always largest near the top of the obstacles. Mean flow velocity and pressure data allow precise determination of the zero-plane displacement (defined as the height at which the axial surface drag force acts) and this leads to noticeably better fits to the log-law region than can be obtained by using the zero-plane displacement merely as a fitting parameter. There are consequent implications for the value of von K´arm´ an’s constant. As the effective roughness of the surface increases, it is also shown that there are significant changes to the structure of the turbulence field around the bottom boundary of the inertial sublayer. In distinct contrast to twodimensional roughness (longitudinal or transverse bars), increasing the area density of this three-dimensional roughness leads to a monotonic decrease in normalized vertical stress around the top of the roughness elements. Normalized turbulence stresses in the outer part of the flows are nonetheless very similar to those in smooth-wall flows.

Journal ArticleDOI
TL;DR: In this paper, the linear response to stochastic and optimal harmonic forcing of small coherent perturbations to the turbulent channel mean flow is computed for Reynolds numbers ranging from Re_tau=500 to Re_ tau=20000.
Abstract: The linear response to stochastic and optimal harmonic forcing of small coherent perturbations to the turbulent channel mean flow is computed for Reynolds numbers ranging from Re_tau=500 to Re_tau=20000. Even though the turbulent mean flow is linearly stable, it is nevertheless able to sustain large amplifications by the forcing. The most amplified structures consist of streamwise elongated streaks that are optimally forced by streamwise elongated vortices. For streamwise elongated structures, the mean energy amplification of the stochastic forcing is found to be, to a first approximation, inversely proportional to the forced spanwise wavenumber while it is inversely proportional to its square for optimal harmonic forcing in an intermediate spanwise wavenumber range. This scaling can be explicitly derived from the linearised equations under the assumptions of geometric similarity of the coherent perturbations and of logarithmic base flow. Deviations from this approximate power-law regime are apparent in the premultiplied energy amplification curves that reveal a strong influence of two different peaks. The dominant peak scales in outer units with the most amplified spanwise wavelength of $\lambda_z \approx 3.5 h$ while the secondary peak scales in wall units with the most amplified $\lambda_z^+\approx 80$. The associated optimal perturbations are almost independent of the Reynolds number when respectively scaled in outer and inner units. In the intermediate wavenumber range the optimal perturbations are approximatively geometrically similar. Furthermore, the shape of the optimal perturbations issued from the initial value, the harmonic forcing and the stochastic forcing analyses are almost indistinguishable. The optimal streaks corresponding to the large-scale peak strongly penetrate into the inner layer, where their amplitude is proportional to the mean-flow profile. At the wavenumbers corresponding to the large-scale peak, the optimal amplifications of harmonic forcing are at least two orders of magnitude larger than the amplifications of the variance of stochastic forcing and both increase with the Reynolds number. This confirms the potential of the artificial forcing of optimal large-scale streaks for the flow control of wall-bounded turbulent flows.

Journal ArticleDOI
TL;DR: In this paper, a parametric study has been carried out to elucidate the characteristics of flow past a square cylinder inclined with respect to the main flow in the laminar flow regime.
Abstract: A parametric study has been carried out to elucidate the characteristics of flow past a square cylinder inclined with respect to the main flow in the laminar flow regime. Reynolds number and angle of incidence are the key parameters which determine the flow characteristics. Location of separation point is greatly affected by angle of incidence, thus determining the flow field around the square cylinder. The critical Reynolds number for periodic vortex shedding at each angle of incidence considered is obtained by using Stuart–Landau equation. Attempt is made to classify the related flow patterns from a topological point of view, resulting in three distinct patterns in total. A comprehensive analysis of the effects of Reynolds number and angle of incidence on flow-induced forces on the square cylinder is presented. Collecting all the results obtained, contour diagrams of force and moment coefficients, Strouhal number, rms of lift-coefficient fluctuation, as well as a flow-pattern diagram are proposed for the ranges of the two parameters considered in the current investigation. Finally, a Floquet stability analysis is presented to detect the onset of the secondary instability leading to three-dimensional flow. The proposed diagrams and the Floquet stability analysis shed light on better physical understanding of the flow past a square cylinder, which should be useful in many engineering applications.

Journal ArticleDOI
TL;DR: In this article, a non-geostrophic Boussinesq model is proposed for a forced horizontal flow with spatially uniform rotation, vertical stratification and vertical shear in a horizontally periodic domain.
Abstract: The oceanic general circulation is forced at large scales and is unstable to mesoscale eddies. Large-scale currents and eddy flows are approximately in geostrophic balance. Geostrophic dynamics is characterized by an inverse energy cascade except for dissipation near the boundaries. In this paper, we confront the dilemma of how the general circulation may achieve dynamical equilibrium in the presence of continuous large-scale forcing and the absence of boundary dissipation. We do this with a forced horizontal flow with spatially uniform rotation, vertical stratification and vertical shear in a horizontally periodic domain, i.e. a version of Eady's flow carried to turbulent equilibrium. A direct route to interior dissipation is presented that is essentially non-geostrophic in its dynamics, with significant submesoscale frontogenesis, frontal instability and breakdown, and forward kinetic energy cascade to dissipation. To support this conclusion, a series of simulations is made with both quasigeostrophic and Boussinesq models. The quasigeostrophic model is shown as increasingly inefficient in achieving equilibration through viscous dissipation at increasingly higher numerical resolution (hence Reynolds number), whereas the non-geostrophic Boussinesq model equilibrates with only weak dependence on resolution and Rossby number.

Journal ArticleDOI
TL;DR: The paper presents the transportation of viscoelastic fluid with fractional Maxwell model by peristalsis through a channel under long wavelength and low Reynolds number approximations.

Journal ArticleDOI
TL;DR: In this article, the impact of realistic roughness on the spatial structure of wall turbulence at moderate Reynolds number was investigated using a turbine blade damaged by deposition of foreign materials and its features are quite distinct from most roughness characterizations previously considered as it is highly irregular and embodies a broad range of topographical scales.
Abstract: Particle image velocimetry experiments were performed to study the impact of realistic roughness on the spatial structure of wall turbulence at moderate Reynolds number. This roughness was replicated from an actual turbine blade damaged by deposition of foreign materials and its features are quite distinct from most roughness characterizations previously considered as it is highly irregular and embodies a broad range of topographical scales. The spatial structure of flow over this rough surface near the outer edge of the roughness sublayer is contrasted with that of smooth-wall flow to identify any structural modifications due to roughness. Hairpin vortex packets are observed in the outer layer of the rough-wall flow and are found to contribute heavily to the Reynolds shear stress, consistent with smooth-wall flow. While similar qualitative consistency is observed in comparisons of smooth- and rough-wall two-point correlations, some quantitative differences are also apparent. In particular, a reduction in the streamwise extent of two-point correlations of streamwise velocity is noted which could be indicative of a roughness-induced modification of outer-layer vortex organization. Proper orthogonal decomposition analysis reveals the streamwise coherence of the larger scales to be most sensitive to roughness while the spatial characteristics of the smaller scales appear relatively insensitive to such effects.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the forced convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer, for applications in atmospheric boundary layer (ABL) wind flow around surface-mounted obstacles such as buildings.

Journal ArticleDOI
TL;DR: In this article, it was shown that the lower branch of Couette flow is a finite Reynolds number analogue of a Rayleigh vortex-wave interaction with scales appropriately modified from those for external flows to Couette flows.
Abstract: The relationship between asymptotic descriptions of vortex–wave interactions and more recent work on ‘exact coherent structures’ is investigated. In recent years immense interest has been focused on so-called self-sustained processes in turbulent shear flows where the importance of waves interacting with streamwise vortex flows has been elucidated in a number of papers. In this paper, it is shown that the so-called ‘lower branch’ state which has been shown to play a crucial role in these self-sustained processes is a finite Reynolds number analogue of a Rayleigh vortex–wave interaction with scales appropriately modified from those for external flows to Couette flow, the flow of interest here. Remarkable agreement between the asymptotic theory and numerical solutions of the Navier–Stokes equations is found even down to relatively small Reynolds numbers, thereby suggesting the possible importance of vortex–wave interaction theory in turbulent shear flows. The relevance of the work to more general shear flows is also discussed.

Journal ArticleDOI
TL;DR: In this article, a coiled wire inserted tube in turbulent flow regime was experimentally investigated and the results revealed that the best operating regime of all wire inserts is detected at low Reynolds number, leading to more compact heat exchanger.

Journal ArticleDOI
TL;DR: In this paper, an experimental investigation of the flow generated by a homogeneous population of bubbles rising in water is reported for three different bubble diameters (d = 1.6, 2.1 and 2.5 mm).
Abstract: An experimental investigation of the flow generated by a homogeneous population of bubbles rising in water is reported for three different bubble diameters (d = 1.6, 2.1 and 2.5 mm) and moderate gas volume fractions (0.005≤α≤0.1). The Reynolds numbers, Re = V 0 d/ν, based on the rise velocity V 0 of a single bubble range between 500 and 800. Velocity statistics of both the bubbles and the liquid phase are determined within the homogeneous bubble swarm by means of optical probes and laser Doppler anemometry. Also, the decaying agitation that takes place in the liquid just after the passage of the bubble swarm is investigated from high-speed particle image velocimetry measurements. Concerning the bubbles, the average velocity is found to evolve as V 0 α -0.1 whereas the velocity fluctuations are observed to be almost independent of α. Concerning the liquid fluctuations, the probability density functions adopt a self-similar behaviour when the gas volume fraction is varied, the characteristic velocity scaling as V 0 α 0.4 . The spectra of horizontal and vertical liquid velocity fluctuations are obtained with a resolution of 0.6 mm. The integral length scale Λ is found to be proportional to V 2 0 /g or equivalently to d/C d0 , where g is the gravity acceleration and C d0 the drag coefficient of a single rising bubble. Normalized by using Λ, the spectra are independent on both the bubble diameter and the volume fraction. At large scales, the spectral energy density evolves as the power -3 of the wavenumber. This range starts approximately from Λ and is followed for scales smaller than Λ/4 by a classic -5/3 power law. Although the Kolmogorov microscale is smaller than the measurement resolution, the dissipation rate is however obtained from the decay of the kinetic energy after the passage of the bubbles. It is found to scale as α 0.9 V 3 0 /Λ. The major characteristics of the agitation are thus expressed as functions of the characteristics of a single rising bubble. Altogether, these results provide a rather complete description of the bubble-induced turbulence.

Journal ArticleDOI
TL;DR: In this paper, it was shown that large-eddy simulation of the atmospheric boundary layer (ABL) creates a systematic peak in ϕ(z)≡(∂U/∂z)/(u∗/z) in the inertia-dominated surface layer, where u∗ is the friction velocity and z is the distance from the surface.
Abstract: Law-of-the-wall (LOTW) scaling implies that at sufficiently high Reynolds numbers the mean velocity gradient ∂U/∂z in the turbulent boundary layer should scale on u∗/z in the inertia-dominated surface layer, where u∗ is the friction velocity and z is the distance from the surface. In 1992, Mason and Thomson pointed out that large-eddy simulation (LES) of the atmospheric boundary layer (ABL) creates a systematic peak in ϕ(z)≡(∂U/∂z)/(u∗/z) in the surface layer. This “overshoot” is particularly evident when the first grid level is within the inertial surface layer and in hybrid LES/Reynolds-averaged Navier–Stokes methods such as “detached-eddy simulation,” where the overshoot is identified as a “logarithmic layer mismatch.” Negative consequences of the overshoot—spurious streamwise coherence, large-eddy structure, and vertical transport—are enhanced by buoyancy. Several studies have shown that adjustments to the modeling of the subfilter scale (SFS) stress tensor can alter the degree of the overshoot. A com...

Journal ArticleDOI
TL;DR: In this paper, a large-eddy simulation of turbulent flow in an open channel through staggered arrays of rigid, emergent cylinders, which can be regarded as idealized vegetation, is presented.
Abstract: This paper presents results of several large-eddy simulations (LES) of turbulent flow in an open channel through staggered arrays of rigid, emergent cylinders, which can be regarded as idealized vegetation. In this study, two cylinder Reynolds numbers, RD=1,340 and RD=500, and three vegetation densities are considered. The LES of the lowest density and at RD=1,340 corresponds to a recently completed laboratory experiment, the data of which is used to validate the simulations. Fairly good agreement between calculated and measured first- and second-order statistics along measurement profiles is found, confirming the accuracy of the simulations. The high resolution of the simulations enables an explicit calculation of drag forces, decomposed into pressure and friction drag, that are exerted on the cylinders. The effect of the cylinder Reynolds number and the cylinder density on the drag and hence on the flow resistance is quantified and in agreement with previous experimental studies. Turbulence structures are visualized through instantaneous pressure fluctuations, isosurfaces of the Q-criterion and contours of vertical vorticity in horizontal planes. Analysis of velocity time signals and distributions of drag and lift forces over time reveals that flow and turbulence are more influenced by the vegetation density than by the cylinder Reynolds number.

Journal ArticleDOI
TL;DR: A review of recent advances in the study of high Reynolds number turbulent boundary layers is given in this article, where the emergent regime of very large-scale structures in the logarithmic region and their subsequent influence on the near-wall cycle challenges many of the previously held assumptions regarding scaling of turbulent boundary layer at high Reynolds numbers.