scispace - formally typeset
Search or ask a question
Topic

Rheometer

About: Rheometer is a research topic. Over the lifetime, 5759 publications have been published within this topic receiving 125849 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared powder flowability measurements using the two methodologies available from a Freeman FT4 powder Rheometer, including the twisted blade method and automated shear cell.

511 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the dependence of the transient diameter profile and the time to breakup on the molecular weight, and compared the observations with simple theories for breakup of slender viscoelastic filaments.
Abstract: We study the elasto-capillary self-thinning and ultimate breakup of three polystyrene-based ideal elastic fluids by measuring the evolution in the filament diameter as slender viscoelastic threads neck and eventually break. We examine the dependence of the transient diameter profile and the time to breakup on the molecular weight, and compare the observations with simple theories for breakup of slender viscoelastic filaments. The evolution of the transient diameter profile predicted by a multimode FENE-P model quantitatively matches the data provided the initial stresses in the filament are taken into account. Finally, we show how the transient uniaxial extensional viscosity of a dilute polymer solution can be estimated from the evolution in the diameter of the necking filament. The resulting “apparent extensional viscosity” profiles are compared with similar results obtained from a filament stretching rheometer. Both transient profiles approach the same value for the steady state extensional viscosity, which increases with molecular weight in agreement with the Rouse–Zimm theory. The apparent discrepancy in the growth rate of the two transient curves can be quantitatively explained by examining the effective stretch rate in each configuration. Filament thinning studies and filament stretching experiments thus form complementary experiments that lead to consistent measures of the transient extensional viscosity of a given test fluid.

506 citations

Journal ArticleDOI
TL;DR: In this article, a Couette device of a R•17 Weissenberg Rheogoniometer with suspensions of polystyrene spheres, 40-50 μm in diameter, suspended in a mixture of silicone oils at volume fractions 0⩽φ0.55 was used for steady and transient shear measurements.
Abstract: Two novel phenomena were observed in steady and transient shear measurements which were made in a Couette device of a R‐17 Weissenberg Rheogoniometer with suspensions of polystyrene spheres, 40–50 μm in diameter, suspended in a mixture of silicone oils at volume fractions 0⩽φ0.55. When φ⩾0.3, the steady‐shear viscosity at a given shear rate was found to drift for many hours to an asymptotic value which, in contrast to the scatter of the initial measurements, was very reproducible. Again, when φ⩾0.3, the shear stress showed a memory for the direction of previous shearing when the shear was stopped for a while and then restarted with either the same or the opposite sign. Moreover, during oscillatory shear experiments, these suspensions exhibited a nonlinear response which in fact could be predicted from their response to a sudden reversal of the direction of steady shear. It would appear, therefore, that such concentrated two‐phase systems cannot be modeled as isotropic fluids having a scalar effective viscosity unless the solids concentration is low.

503 citations

Journal ArticleDOI
TL;DR: By focusing on entire bubbles rather than films or vertices, a simple model is proposed for the deformation and flow of foam in which dimensionality, polydispersity, and liquid content can easily be varied.
Abstract: By focusing on entire bubbles rather than films or vertices, a simple model is proposed for the deformation and flow of foam in which dimensionality, polydispersity, and liquid content can easily be varied. Simulation results are presented for the linear elastic properties as a function of bubble volume fraction, showing a melting transition where the static shear modulus vanishes and the relaxation time scale peaks. Results are also presented for shear stress versus strain rate, showing intermittent flow via avalanchelike topological rearrangements and Bingham-plastic behavior.

488 citations

Journal ArticleDOI
TL;DR: In this article, the effect of droplet size on the rheological behavior of water-in-oil and oilin-water emulsions was investigated using a controlled-stress rheometer.
Abstract: The effect of droplet size on the rheological behavior of water-in-oil and oil-in-water emulsions was investigated using a controlled-stress rheometer. Results indicate that the droplet size has a dramatic influence on emulsion rheology. Fine emulsions (water-in-oil or oil-in-water) have much higher viscosities and storage moduli than the corresponding coarse emulsions. The shear-thinning effect is much stronger in the case of fine emulsions. When coarse droplets are replaced by fine droplets (keeping total volume fraction of the dispersed phase constant), the resulting emulsion exhibits a minimum in rheological properties (viscosity, storage and loss moduli, time constant) at a certain proportion of fine droplets. However, the minimum in viscosity occurs only at low shear stresses. At high stresses, the viscosity of the mixed emulsion increases as the proportion of fine droplets increases. The study of the aging effect on the rheological behavior shows that water-in-oil emulsions age much more rapidly than the oil-in-water emulsions.

487 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
84% related
Phase (matter)
115.6K papers, 2.1M citations
81% related
Ultimate tensile strength
129.2K papers, 2.1M citations
81% related
Particle size
69.8K papers, 1.7M citations
81% related
Polymerization
147.9K papers, 2.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023240
2022487
2021164
2020196
2019201
2018162