scispace - formally typeset
Search or ask a question
Topic

Rheometer

About: Rheometer is a research topic. Over the lifetime, 5759 publications have been published within this topic receiving 125849 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a method was described in which the yield stress of portland cement paste is determined from its creep/recovery behavior measured using a constant stress rheometer.

75 citations

Journal ArticleDOI
TL;DR: In this paper, the templating effect due to single wall carbon nanotubes (SWCNT) and shear on polymer crystallization has been studied in films of nanocomposites based on poly(butylene terephthalate) (PBT).
Abstract: The templating effect due to single wall carbon nanotubes (SWCNT) and shear on polymer crystallization has been studied in films of nanocomposites based on poly(butylene terephthalate) (PBT). With the use of a rheometer, a step shear was applied to the molten polymer. After shear cessation, the sample was immediately cooled down to the crystallization temperature. Crystalline development, in real time, was investigated by small-angle X-ray scattering (SAXS) with a synchrotron radiation beam parallel to the film. SWCNT bundles template polymer lamellae to grow perpendicular to the SWCNT surfaces in a shish-kebab fashion even under quiescent conditions. Because of the power of SWCNT as nucleating agents, the shear rate has a minor effect on the crystallization kinetics. However, the fraction of oriented material increases significantly with shear rate. The results indicate that SWCNT act as nuclei stabilizers, providing surfaces which favor polymer crystallization.

75 citations

BookDOI
14 Jan 2011
TL;DR: In this article, the authors present an interpretation approach for rheological analysis of foods, including xanthan gums, and apply it to signal processing and computer vision applications, such as mammography and mammography.
Abstract: Preface. Contributors. 1 Introduction - Why the Interpretive Approach? (Niall W. G. Young). 1.1 Rheology - What is in it for me? 1.1.1 Case study. 2 Viscosity and Oscillatory Rheology (Taghi Miri). 2.1 Introduction. 2.2 Food rheology. 2.3 Directions of rheological research. 2.3.1 Phenomenological rheology or macrorheology. 2.3.2 Structural rheology or microrheology. 2.3.3 Rheometry. 2.3.4 Applied rheology. 2.4 Steady-state shear flow behaviour: viscosity. 2.4.1 Rheological models for shear flow. 2.4.2 Wall slip. 2.5 Viscoelasticity and oscillation. 2.5.1 Oscillatory testing. 2.6 Process, rheology and microstructural interactions. 2.7 Rheology of soft solids. 2.7.1 Capillary rheometer. 2.7.2 Squeeze flow rheometer. 2.8 Measuring instruments - practical aspects. 2.8.1 Choosing the right measuring system. 3 Doppler Ultrasound-Based Rheology (Beat Birkhofer). 3.1 Introduction. 3.1.1 Overview. 3.1.2 History of ultrasonic velocimetry. 3.1.3 Existing literature on UVP-based rheometry. 3.2 Ultrasound transducers. 3.3 Flow adapter. 3.3.1 Doppler angle. 3.4 Acoustic properties. 3.4.1 Propagation. 3.4.2 Attenuation. 3.4.3 Sound velocity. 3.4.4 Scattering. 3.4.5 Backscattering. 3.5 Electronics, signal processing and software. 3.5.1 Electronics. 3.5.2 Signal processing and profile estimation. 3.5.3 Software. 3.6 Pipe flow and fluid models. 3.6.1 Gradient method or point-wise rheological characterisation. 3.6.2 Power law fluid model. 3.6.3 Herschel-Bulkley fluid model. 3.6.4 Other models. 3.7 Rheometry. 3.7.1 Averaging effects at the pipe wall. 3.7.2 Fitting. 3.7.3 Gradient method. 3.8 Examples. 3.8.1 Carbopol solution. 3.8.2 Suspension of polyamide in rapeseed oil. 3.9 Summary. 4 Hydrocolloid Gums - Their Role and Interactions in Foods (Tim Foster and Bettina Wolf). 4.1 Introduction. 4.2 Behaviour of hydrocolloid gums in solution. 4.3 Hydrocolloid gelation and gel rheology. 4.4 Hydrocolloid-hydrocolloid interactions. 4.5 Hydrocolloids in foods - role and interactions. 5 Xanthan Gum - Functionality and Application (Graham Sworn). 5.1 Introduction. 5.2 Xanthan molecular structure and its influence on functionality. 5.3 The conformational states of xanthan gum. 5.4 Food ingredients and their effects on xanthan gum functionality. 5.4.1 Salts. 5.4.2 Acids (pH). 5.4.3 Xanthan and proteins. 5.4.4 Xanthan and starch. 5.5 Food processing and its impact on xanthan gum functionality. 5.5.1 Thermal treatment. 5.5.2 Homogenisation. 5.5.3 Freezing. 5.6 Food structures. 5.6.1 Emulsions. 5.6.2 Gels. 5.7 Applications. 5.8 Future trends. 6 Alginates in Foods (Alan M. Smith and Taghi Miri). 6.1 Alginate source and molecular structure. 6.2 Alginate hydrogels. 6.3 Alginic acid. 6.4 Alginate solutions. 6.5 Enzymatically tailored alginate. 6.6 Alginates as food additive. 6.6.1 Gelling agent. 6.6.2 Thickening agent. 6.6.3 Film-forming agent. 6.6.4 Encapsulation and immobilisation. 6.6.5 Texturisation of vegetative materials. 6.6.6 Stabiliser. 6.6.7 Appetite control. 6.6.8 Summary. 7 Dairy Systems (E. Allen Foegeding, Bongkosh Vardhanabhuti and Xin Yang). 7.1 Introduction. 7.2 Fluid milk. 7.2.1 Rheological properties of milk. 7.2.2 Measurements of the rheological properties of milk. 7.2.3 Factors influencing milk rheological properties. 7.2.4 Correlating rheological properties of milk to sensory perceptions. 7.2.5 Process engineering calculation. 7.3 Solid cheese. 7.3.1 Small amplitude oscillatory tests. 7.3.2 Large strain rheological analysis. 7.3.3 Creep and stress relaxation. 7.4 Rheological properties of semi-solid dairy foods. 7.4.1 Flow properties. 7.4.2 Yield stress. 7.4.3 Viscoelastic properties of semi-solid dairy products. 7.5 Effect of oral processing on interpretation of rheological measurement. 8 Relationship between Food Rheology and Perception (John R. Mitchell and Bettina Wolf). 8.1 Introduction. 8.2 Rheology and thickness perception. 8.3 Rheology and flavour perception. 8.4 Mixing, microstructure, gels and mouthfeel. 8.4.1 Mixing. 8.4.2 Microstructure. 8.4.3 Mouthfeel. 8.4.4 Gels. 8.5 Beyond shear rheology. 8.6 Conclusions. 9 Protein-Stabilised Emulsions and Rheological Aspects of Structure and Mouthfeel (Fotios Spyropoulos, Ernest Alexander K. Heuer, Tom B. Mills and Serafim Bakalis). 9.1 Introduction. 9.2 Processing and stability of emulsions. 9.2.1 Instabilities in emulsions. 9.2.2 Protein functionality at liquid interfaces. 9.2.3 Protein-stabilised oil-in-water emulsions - Effect of aqueous phase composition. 9.2.4 Effect of processing. 9.3 Oral processes. 9.3.1 Different stages and phenomena during oral processing. 9.3.2 Fluid dynamics during oral processing. 9.3.3 Interactions with saliva. 9.3.4 Interaction with oral surfaces. 9.4 In vitro measurements of sensory perception. 9.5 Future perspectives. 10 Rheological Control and Understanding Necessary to Formulate Healthy Everyday Foods (Ian T. Norton, Abigail B. Norton, Fotios Spyropoulos, Benjamin J. D. Le Reverend and Philip Cox). 10.1 Introduction. 10.2 Design and control of material properties of foods inside people. 10.2.1 Oral perception of foods. 10.2.2 Food in the stomach. 10.2.3 Food in the intestine. 10.3 Reconstructing foods to be healthy and control dietary intake. 10.3.1 Use of emulsions as partial fat replacement. 10.3.2 Duplex emulsions. 10.3.3 Fat replacement with air-filled emulsion. 10.3.4 Sheared gels (fluid gels). 10.3.5 Water-in-water emulsions. 10.3.6 Self-structuring systems. 10.4 Conclusions. References. Index.

75 citations

Journal ArticleDOI
TL;DR: In this article, the nominal viscosity of the multilayer samples was measured with three types of rheometers: an in-line slit-die rheometer, rotational parallel-disks, and sliding plate.
Abstract: Significant slip can occur in the flow of a blend of two immiscible polymers due to reduced entanglements at their interface. The slip is of practical importance because of its effect on morphology and adhesion in, for example, disordered two-phase blends or multilayer films. Interfacial slip was quantified using two polymer pairs each with closely matched viscosity and elasticity but different miscibility (χ): polypropylene (PP)/polystyrene (PS) χ=0.04 and polyethylene (PE)/fluoropolymer (FP) χ≅0.1. To control the amount of interfacial area, we prepared alternating layers by coextrusion. The number of layers of PP/PS ranged from 20 to 640 while that for PE/FP was 80. Nominal viscosity of the multilayer samples was measured with three types of rheometers: an in-line slit-die rheometer, rotational parallel-disks, and sliding plate. Good agreement was found between the three methods. The nominal viscosity as well as shear normal stresses of the multilayer samples decreased with the number of layers. From th...

75 citations

Journal ArticleDOI
TL;DR: Luengo et al. as mentioned in this paper proposed a tribo-rheometry fixture that can be used with a commercial torsional rheometer in order to explore the coupled rheological and tribological properties of complex fluids and solid-liquid systems.
Abstract: We describe a new tribo-rheometry fixture that can be utilized with a commercial torsional rheometer in order to explore the coupled rheological and tribological properties of complex fluids and solid–liquid systems. The fixture is self-leveling and both the normal load and the sample gap can be monitored or controlled. At large gaps, the fixture imposes an approximately constant shear rate on the sample and the bulk viscometric properties of the fluid can be measured. However, as the gap between the plates is reduced, the measured viscosity function becomes gap-dependent. For gaps on the order of the surface roughness of the plates, the device is operated under a constant applied load and the tribological properties of the fluid–solid pair can then be measured. Using this new tribo-rheometer fixture it is possible to obtain tribological information over a wider range of sliding velocities than is typically possible using conventional devices such as pin-and-disk systems. The data can be represented in the form of a classical Stribeck diagram or, by using a dimensionless gap-dependent shift factor, it is possible to construct a more general “friction map” of the gap- and load-dependent effective viscosity (Luengo et al. Wear 200 (1996)). The capabilities of this system are illustrated using a number of different lubricant fluids, for a range of normal stresses and variations in surface properties such as the mean roughness.

75 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
84% related
Phase (matter)
115.6K papers, 2.1M citations
81% related
Ultimate tensile strength
129.2K papers, 2.1M citations
81% related
Particle size
69.8K papers, 1.7M citations
81% related
Polymerization
147.9K papers, 2.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023240
2022487
2021164
2020196
2019201
2018162