scispace - formally typeset
Search or ask a question

Showing papers on "Rhinal sulcus published in 1977"


Journal ArticleDOI
TL;DR: The mediodorsal nucleus of the rat thalamus has been divided into medial, central and lateral segments, and these segments have been shown by experiments using the autoradiographic method of demonstrating axonal connections to project to seven distinct cortical areas covering most of the frontal pole of the hemisphere.
Abstract: The mediodorsal nucleus of the rat thalamus has been divided into medial, central and lateral segments on the basis of its structure and axonal connections, and these segments have been shown by experiments using the autoradiographic method of demonstrating axonal connections to project to seven distinct cortical areas covering most of the frontal pole of the hemisphere. The position and cytoarchitectonic characteristics of these areas are described. The medial segment of the nucleus projects to the prelimbic area (32) on the medial surface of the hemisphere, and to the dorsal agranular insular area, dorsal to the rhinal sulcus on the lateral surface. The lateral segment projects to the anterior cingulate area (area 24) and the medial precentral area on the dorsomedial shoulder of the hemisphere, while the central segment projects to the ventral agranular insular area in the dorsal bank of the rhinal sulcus, and to a lateral part of the orbital cortex further rostrally. (The term "orbital" is used to refer to the cortex on the ventral surface of the frontal pole of the hemisphere.) A ventral part of this orbital cortex also receives fibers from the mediodorsal nucleus, possibly its lateral segment, but the medial part of the orbital cortex, and the ventrolateral orbital area in the fundus of the rhinal sulcus receive projections from the paratenial nucleus and the submedial nucleus, respectively. All of these thalamocortical projections end in layer III, and in the outer part of layer I. The basal nucleus of the ventromedial complex (the thalamic taste relay) has been shown to have a similar laminar projection (layer I and layers III/IV) to the granular insular area immediately dorsal to, but not overlapping, the mediodorsal projection field. However, the principal nucleus of the ventromedial complex appears to project to layer I, and possibly layer VI, of the entire frontal pole of the hemisphere. The anteromedial nucleus does not appear to project to layer III of the projection field of the mediodorsal nucleus, although it may project to layers I and VI, especially in the anterior cingulate and medial precentral areas. A thalamoamygdaloid projection from the medial segment of the mediodorsal nucleus to the basolateral nucleus of the amygdala has also been demonstrated, which reciprocates an amygdalothalamic projection from the basolateral nucleus to the medial segment. The habenular nuclei also appear to project to the central nucleus of the amygdala. These results are discussed in relation to the delineation and subdivision of the prefrontal cortex in the rat, and to amygdalothalamic and amygdalocortical projections which are described in a subsequent paper (Krettek and Price, '77).

1,259 citations


Journal ArticleDOI
TL;DR: Projections are described from the basolateral, lateral and anterior cortical nuclei of the amygdaloid complex, and from the prepiriform cortex, to several discrete areas of the cerebral cortex in the rat and cat and to the mediodorsasl thalamic nucleus in the rats.
Abstract: Projections are described from the basolateral, lateral and anterior cortical nuclei of the amygdaloid complex, and from the prepiriform cortex, to several discrete areas of the cerebral cortex in the rat and cat and to the mediodorsal thalamic nucleus in the rat. These projections are very well-defined in their origin, and in their area of laminar pattern of termination. The basolateral amygdaloid nucleus can be divided into anterior and posterior divisions, based on cytoarchitectonic and connectional distinctions. In both the rat and cat the posterior division projects to the prelimbic area (area 32) and the infralimbic area (area 25) on the medical surface of the hemisphere. The anterior division projects more lightly to these areas, but also sends fibers to the dorsal and posterior agranular insular areas and the perirhinal area on the lateral surface. Furthermore, in the cat the perirhinal area is divided into two areas (areas 35 and 36) and the anterior division projects to both of these and also to a ventral part of the granular insular area; this last area is adjacent to, but separate from the auditory insular area and the second cortical taste area. In most of these areas, the fibers from the basolateral nucleus terminate predominantly in two bands: one in the deep part of layer I and layer II, and a heavier band in layer V (in the rat) or layers V and VI (in the cat). The lateral amygdaloid nucleus projects heavily to the perirhinal area, and also to the posterior agranular insular area. These fibers terminate predominantly in the middle layers of the cortex, although the cellular lamination in these two areas is relatively indistinct. The anterior cortical amygdaloid nucleus and the prepiriform cortex both project to the infralimbic area and the ventral agranular insular area, and the anterior cortical nucleus also projects to the posterior agranular area and the perirhinal area. In all of these areas, the fibers from these olfactory-related structures terminate in the middle of layer I. In the rat, the two divisions of the basolateral nucleus also project to the medial segment of the mediodorsal thalamic nucleus, with the anterior division projecting mainly to the posterior part of this segment and the posterior division to the anterior part. The endopiriform nucleus, deep to the prepiriform cortex, projects to the central segment of the mediodorsal nucleus; this may constitute the major olfactory input into the mediodorsal nucleus, since little or no projection could be demonstrated from the prepiriform cortex itself. Projections to the mediodorsal nucleus have not been found in the cat.

781 citations


Journal ArticleDOI
TL;DR: Axonal projections are described from the lateral and hasolateral nuclei of the amygdaloid complex, and from the overlying periamygdaloids and pre‐piriform cortices and the endopiriform nucleus, to the lateral entorhinal area, the ventral part of the subiculum, and the parasubiculum in the cat and rat.
Abstract: Axonal projections are described from the lateral and basolateral nuclei of the amygdaloid complex, and from the overlying periamygdaloid and prepiriform cortices and the endopiriform nucleus, to the lateral entohinal area, the ventral part of the subiculum, and the parasubiculum in the cat and rat. All of these projections have well-defined laminar patterns of termination, which are complementary to those of other projections to the same structure. Based on these results, and on cytoarchitectonic distinctions, the lateral entohinal area has been divided into dorsal, ventral, and ventromedial subdivisions. The olfactory bulb and prepiriform cortex project to layers IA and IB, respectively, of all three subdivisions, but the lateral amygdaloid nucleus has a restricted projection to layer III of the ventral subdivision only. The periamygdaloid cortex projects to layer II of the ventromedial and adjoining parts of the ventral subdivisions. The ventral part of the subiculum receives fibers from the posterior division of the basolateral nucleus, which terminate in the cellular layer and the deep half to one-third of the plexiform layer. The periamygdaloid cortex and the endopiriform nucleus also project to the same part of the subiculum, but these fibers terminate in the outer part of the plexiform layer. None of these projections extend into the dorsal part of the subiculum. The posterior division of the basolateral nucleus also projects to the posterodorsal part of the parasubiculum ("parasubiculum a" of Blackstad, '56). These fibers end in the deeper part of the plexiform layer and the superficial part of the cellular layer.

515 citations


Journal ArticleDOI
TL;DR: The organization of sensory and motor regions of the cerebral cortex has been studied in the platypus and a large single area of somatosensory representation in the posterior region of the hemisphere was found.
Abstract: The organization of sensory and motor regions of the cerebral cortex has been studied in the platypus (Ornithorhynchus anatinus), of the order Monotremata. Comparisons were made with the organization found in the other representative of this order, the echidna, and with primitive species of eutherian and metatherian mammals. Evoked potential and single neuron studies revealed a large single area of somatosensory representation in the posterior region of the hemisphere, extending from an approximately mid-sagittal position around to the region of the rhinal sulcus on the ventrolateral surface of the hemisphere. The mediolateral representation of contralateral body parts was consistent with the pattern in the primary somatosensory area of other mammalian species. No evidence of a second somatosensory area was found. Neurons with similar receptive fields were grouped in columns normal to the cortical surface and a highly ordered pattern of somatotopic representation was found. Within the large area of bill representation individual neurons had receptive fields which were often punctate and no more than 1 mm in diameter. They responded to dynamic components of tactile stimuli delivered to their receptive fields on the bill. Movements on the contralateral side of the body could be elicited by bipolar electrical stimulation over an area on the dorsal surface of the hemisphere which largely overlapped the somatosensory area, but extended further anteriorly towards the frontal pole of the hemisphere. Visual and auditory projection regions were found overlapping the somatosensory area in the posterior part of the hemisphere. The auditory area overlapped the visual area and appeared to be displaced posteromedially in relation to its position in other species, a displacement which may be a consequence of the large expanse of cortical area associated with the bill. The observation that a large proportion of cortical area is devoted to specific sensory and motor function in platypus corresponds with earlier findings in primitive eutherian and metatherian species. The platypus neocortex appears to represent a more primitive stage of cortical development than that found in the other member of the order Monotremata, the echidna.

59 citations