scispace - formally typeset
Search or ask a question
Topic

Riccati equation

About: Riccati equation is a research topic. Over the lifetime, 10428 publications have been published within this topic receiving 210015 citations. The topic is also known as: Riccati's differential equation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the capabilities of the state-dependent Riccati equation (SDRE) technique are illustrated in producing two control designs for the benchmark problem, and the first design shows that in the absence of disturbances and uncertainties, the SDRE nonlinear feedback solution compares very favorably to the optimal open-loop solution of the posed nonlinear regulator problem.
Abstract: A nonlinear control problem has been posed by Bupp et al. to provide a benchmark for evaluating various nonlinear control design techniques. In this paper, the capabilities of the state-dependent Riccati equation (SDRE) technique are illustrated in producing two control designs for the benchmark problem. The SDRE technique represents a systematic way of designing nonlinear regulators. The design procedure consists of first using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficients (SDC). A state-dependent Riccati equation is then solved at each point x along the trajectory to obtain a nonlinear feedback controller of the form u=−R-1(x)BT(x)P(x)x, where P(x) is the solution of the SDRE. Analysis of the first design shows that in the absence of disturbances and uncertainties, the SDRE nonlinear feedback solution compares very favorably to the optimal open-loop solution of the posed nonlinear regulator problem, the latter being obtained via numerical optimization. It is also shown via simulation that the closed-loop system has stability robustness against parametric variations and attenuates sinusoidal disturbances. In the second design it is demonstrated how a hard bound can be imposed on the control magnitude to avoid actuator saturation. © 1998 John Wiley & Sons, Ltd.

349 citations

Journal ArticleDOI
TL;DR: Two new algorithms for solution of the diserete-time algebraic Riccati equation are presented, related to Potter's and to Laub's methods, but based on the solution of a generalized rather than an ordinary eigenvalue problem.
Abstract: In this paper we shall present two new algorithms for solution of the diserete-time algebraic Riccati equation. These algorithms are related to Potter's and to Laub's methods, but are based on the solution of a generalized rather than an ordinary eigenvalue problem. The key feature of the new algorithms is that the system transition matrix need not be inverted. Thus, the numerical problems associated with an ill-conditioned transition matrix do not arise and, moreover, the algorithm is directly applicable to problems with a singular transition matrix. Such problems arise commonly in practice when a continuous-time system with time delays is sampled.

343 citations

Journal ArticleDOI
TL;DR: In this paper, the Schrodinger equation is solved exactly for some well known potentials and the Nikiforov-Uvarov method is used in the calculations to get energy eigenvalues and the corresponding wave functions.
Abstract: The Schrodinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schrodinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get energy eigenvalues and the corresponding wave functions.

342 citations

Journal ArticleDOI
TL;DR: Based upon the Riccati equation, a new generalized transformation is presented and applied to solve Whitham-Broer-Kaup (WBK) equation in shallow water as mentioned in this paper.

335 citations

Journal ArticleDOI
TL;DR: It is shown that the sigma point function evaluations can be used in the classical EKF rather than an explicitly linearized model, and a less cited version of the EKf based on a second-order Taylor expansion is shown to be quite closely related to UKF.
Abstract: The unscented Kalman filter (UKF) has become a popular alternative to the extended Kalman filter (EKF) during the last decade. UKF propagates the so called sigma points by function evaluations using the unscented transformation (UT), and this is at first glance very different from the standard EKF algorithm which is based on a linearized model. The claimed advantages with UKF are that it propagates the first two moments of the posterior distribution and that it does not require gradients of the system model. We point out several less known links between EKF and UKF in terms of two conceptually different implementations of the Kalman filter: the standard one based on the discrete Riccati equation, and one based on a formula on conditional expectations that does not involve an explicit Riccati equation. First, it is shown that the sigma point function evaluations can be used in the classical EKF rather than an explicitly linearized model. Second, a less cited version of the EKF based on a second-order Taylor expansion is shown to be quite closely related to UKF. The different algorithms and results are illustrated with examples inspired by core observation models in target tracking and sensor network applications.

325 citations


Network Information
Related Topics (5)
Linear system
59.5K papers, 1.4M citations
92% related
Nonlinear system
208.1K papers, 4M citations
89% related
Optimal control
68K papers, 1.2M citations
89% related
Differential equation
88K papers, 2M citations
89% related
Bounded function
77.2K papers, 1.3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023153
2022335
2021203
2020240
2019223
2018231