scispace - formally typeset
Search or ask a question
Topic

Riccati equation

About: Riccati equation is a research topic. Over the lifetime, 10428 publications have been published within this topic receiving 210015 citations. The topic is also known as: Riccati's differential equation.


Papers
More filters
Journal ArticleDOI
TL;DR: Finite-time optimal and suboptimal controls for time-varying systems with state and control nonlinearities for robotic manipulator are investigated and general formulation and stability analysis is provided.
Abstract: This article investigates finite-time optimal and suboptimal controls for time-varying systems with state and control nonlinearities. The state-dependent Riccati equation (SDRE) controller was the main framework. A finite-time constraint imposed on the equation changes it to a differential equation, known as the state-dependent differential Riccati equation (SDDRE) and this equation was applied to the problem reported in this study that provides general formulation and stability analysis. The following four solution methods were developed for solving the SDDRE; backward integration, state transition matrix (STM) and the Lyapunov based method. In the Lyapunov approach, both positive and negative definite solutions to related SDRE were used to provide suboptimal gain for the SDDRE. Finite-time suboptimal control is applied for robotic manipulator, as finite-time constraint strongly decreases state error and operation time. General state-dependent coefficient (SDC) parameterizations for rigid and flexible joint arms (prismatic or revolute joints) are introduced. By including nonlinear control inputs in the formulation, the actuator׳s limits can be inserted directly to the state-space equation of a manipulator. A finite-time SDRE was implemented on a 6R manipulator both in theory and experimentally. And a reduced 3R arm was modeled and tested as a flexible joint robot (FJR). Evaluations of load carrying capacity and operation time were investigated to assess the capability of this approach, both of which showed significant improvement.

105 citations

Journal ArticleDOI
TL;DR: This paper is devoted to the study of a stochastic linear-quadratic optimal control problem where the control variable is constrained in a cone, and all the coefficients of the problem are random processes.
Abstract: This paper is devoted to the study of a stochastic linear-quadratic (LQ) optimal control problem where the control variable is constrained in a cone, and all the coefficients of the problem are random processes. Employing Tanaka's formula, optimal control and optimal cost are explicitly obtained via solutions to two extended stochastic Riccati equations (ESREs). The ESREs, introduced for the first time in this paper, are highly nonlinear backward stochastic differential equations (BSDEs), whose solvability is proved based on a truncation function technique and Kobylanski's results. The general results obtained are then applied to a mean-variance portfolio selection problem for a financial market with random appreciation and volatility rates, and with short-selling prohibited. Feasibility of the problem is characterized, and efficient portfolios and efficient frontier are presented in closed forms.

105 citations

Journal ArticleDOI
TL;DR: By employing the property of Hamiltonian matrix, the solvability and analytic solution for the preview full-information control problem are clarified based on an auxiliary introduced matrix Riccati equation.

104 citations

Journal ArticleDOI
TL;DR: In this paper, the robust stabilizability of the class of uncertain linear systems with Markovian jumping parameters was studied under the assumption of complete access to the continuous state, the stochastic stabilisation of the nominal system and the boundedness of the system's uncertainties, sufficient conditions which guarantee the robust stability of the uncertain systems are presented, which are in terms of a set of coupled algebraic Riccati equations.
Abstract: In this paper, we study the problem of robust stabilizability of the class of uncertain linear systems with Markovian jumping parameters. Under the assumption of complete access to the continuous state, the stochastic stabilizability of the nominal system and the boundedness of the system's uncertainties, sufficient conditions which guarantee the robust stability of the uncertain systems are presented, which are in terms of a set of coupled algebraic Riccati equations. A numerical example is given to illustrate the potential of the proposed technique.

104 citations


Network Information
Related Topics (5)
Linear system
59.5K papers, 1.4M citations
92% related
Nonlinear system
208.1K papers, 4M citations
89% related
Optimal control
68K papers, 1.2M citations
89% related
Differential equation
88K papers, 2M citations
89% related
Bounded function
77.2K papers, 1.3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023153
2022335
2021203
2020240
2019223
2018231