scispace - formally typeset
Search or ask a question
Topic

Ricci curvature

About: Ricci curvature is a research topic. Over the lifetime, 7624 publications have been published within this topic receiving 157545 citations. The topic is also known as: Ricci curvature tensor & Ricci tensor.


Papers
More filters
Book
02 Jan 2013
TL;DR: In this paper, the authors provide a detailed description of the basic properties of optimal transport, including cyclical monotonicity and Kantorovich duality, and three examples of coupling techniques.
Abstract: Couplings and changes of variables.- Three examples of coupling techniques.- The founding fathers of optimal transport.- Qualitative description of optimal transport.- Basic properties.- Cyclical monotonicity and Kantorovich duality.- The Wasserstein distances.- Displacement interpolation.- The Monge-Mather shortening principle.- Solution of the Monge problem I: global approach.- Solution of the Monge problem II: Local approach.- The Jacobian equation.- Smoothness.- Qualitative picture.- Optimal transport and Riemannian geometry.- Ricci curvature.- Otto calculus.- Displacement convexity I.- Displacement convexity II.- Volume control.- Density control and local regularity.- Infinitesimal displacement convexity.- Isoperimetric-type inequalities.- Concentration inequalities.- Gradient flows I.- Gradient flows II: Qualitative properties.- Gradient flows III: Functional inequalities.- Synthetic treatment of Ricci curvature.- Analytic and synthetic points of view.- Convergence of metric-measure spaces.- Stability of optimal transport.- Weak Ricci curvature bounds I: Definition and Stability.- Weak Ricci curvature bounds II: Geometric and analytic properties.

5,524 citations

Posted Content
TL;DR: In this article, a monotonic expression for Ricci flow, valid in all dimensions and without curvature assumptions, is presented, interpreted as an entropy for a certain canonical ensemble.
Abstract: We present a monotonic expression for the Ricci flow, valid in all dimensions and without curvature assumptions. It is interpreted as an entropy for a certain canonical ensemble. Several geometric applications are given. In particular, (1) Ricci flow, considered on the space of riemannian metrics modulo diffeomorphism and scaling, has no nontrivial periodic orbits (that is, other than fixed points); (2) In a region, where singularity is forming in finite time, the injectivity radius is controlled by the curvature; (3) Ricci flow can not quickly turn an almost euclidean region into a very curved one, no matter what happens far away. We also verify several assertions related to Richard Hamilton's program for the proof of Thurston geometrization conjecture for closed three-manifolds, and give a sketch of an eclectic proof of this conjecture, making use of earlier results on collapsing with local lower curvature bound.

3,091 citations

Journal ArticleDOI
TL;DR: In this paper, the Ricci form of some Kahler metric is shown to be closed and its cohomology class must represent the first Chern class of M. This conjecture of Calabi can be reduced to a problem in non-linear partial differential equation.
Abstract: Therefore a necessary condition for a (1,l) form ( G I a ' r r ) I,,, Rlr dz' A d? to be the Ricci form of some Kahler metric is that it must be closed and its cohomology class must represent the first Chern class of M. More than twenty years ago, E. Calabi [3] conjectured that the above necessary condition is in fact sufficient. This conjecture of Calabi can be reduced to a problem in non-linear partial differential equation.

2,903 citations

Book
17 Mar 2000
TL;DR: In this paper, the authors introduce the concept of Finsler Manifolds and the fundamental properties of Minkowski Norms, and present an interesting family of examples of these properties.
Abstract: One Finsler Manifolds and Their Curvature.- 1 Finsler Manifolds and the Fundamentals of Minkowski Norms.- 1.0 Physical Motivations.- 1.1 Finsler Structures: Definitions and Conventions.- 1.2 Two Basic Properties of Minkowski Norms.- 1.2 A. Euler's Theorem.- 1.2 B. A Fundamental Inequality.- 1.2 C. Interpretations of the Fundamental Inequality.- 1.3 Explicit Examples of Finsler Manifolds.- 1.3 A. Minkowski and Locally Minkowski Spaces.- 1.3 B. Riemannian Manifolds.- 1.3 C. Randers Spaces.- 1.3 D. Berwald Spaces.- 1.3 E. Finsler Spaces of Constant Flag Curvature.- 1.4 The Fundamental Tensor and the Cartan Tensor.- * References for Chapter 1.- 2 The Chern Connection.- 2.0 Prologue.- 2.1 The Vector Bundle ?*TM and Related Objects.- 2.2 Coordinate Bases Versus Special Orthonormal Bases.- 2.3 The Nonlinear Connection on the Manifold TM \0.- 2.4 The Chern Connection on ?*TM.- 2.5 Index Gymnastics.- 2.5 A. The Slash (...)s and the Semicolon (...) s.- 2.5 B. Covariant Derivatives of the Fundamental Tensor g.- 2.5 C. Covariant Derivatives of the Distinguished ?.- * References for Chapter 2.- 3 Curvature and Schur's Lemma.- 3.1 Conventions and the hh-, hv-, vv-curvatures.- 3.2 First Bianchi Identities from Torsion Freeness.- 3.3 Formulas for R and P in Natural Coordinates.- 3.4 First Bianchi Identities from "Almost" g-compatibility.- 3.4 A. Consequences from the $$ dx^k \wedge dx^l $$ Terms.- 3.4 B. Consequences from the $$ dx^k \wedge \frac{1} {F}\delta y^l $$ Terms.- 3.4 C. Consequences from the $$ \frac{1} {F}\delta y^k \wedge \frac{1} {F}\delta y^l $$ Terms.- 3.5 Second Bianchi Identities.- 3.6 Interchange Formulas or Ricci Identities.- 3.7 Lie Brackets among the $$ \frac{\delta } {{\delta x}} $$ and the $$ F\frac{\partial } {{\partial y}} $$.- 3.8 Derivatives of the Geodesic Spray Coefficients Gi.- 3.9 The Flag Curvature.- 3.9 A. Its Definition and Its Predecessor.- 3.9 B. An Interesting Family of Examples of Numata Type.- 3.10 Schur's Lemma.- *References for Chapter 3.- 4 Finsler Surfaces and a Generalized Gauss-Bonnet Theorem.- 4.0 Prologue.- 4.1 Minkowski Planes and a Useful Basis.- 4.1 A. Rund's Differential Equation and Its Consequence.- 4.1 B. A Criterion for Checking Strong Convexity.- 4.2 The Equivalence Problem for Minkowski Planes.- 4.3 The Berwald Frame and Our Geometrical Setup on SM.- 4.4 The Chern Connection and the Invariants I, J, K.- 4.5 The Riemannian Arc Length of the Indicatrix.- 4.6 A Gauss-Bonnet Theorem for Landsberg Surfaces.- *References for Chapter 4.- Two Calculus of Variations and Comparison Theorems.- 5 Variations of Arc Length, Jacobi Fields, the Effect of Curvature.- 5.1 The First Variation of Arc Length.- 5.2 The Second Variation of Arc Length.- 5.3 Geodesics and the Exponential Map.- 5.4 Jacobi Fields.- 5.5 How the Flag Curvature's Sign Influences Geodesic Rays.- *References for Chapter 5.- 6 The Gauss Lemma and the Hopf-Rinow Theorem.- 6.1 The Gauss Lemma.- 6.1 A. The Gauss Lemma Proper.- 6.1 B. An Alternative Form of the Lemma.- 6.1 C. Is the Exponential Map Ever a Local Isometry?.- 6.2 Finsler Manifolds and Metric Spaces.- 6.2 A. A Useful Technical Lemma.- 6.2 B. Forward Metric Balls and Metric Spheres.- 6.2 C. The Manifold Topology Versus the Metric Topology.- 6.2 D. Forward Cauchy Sequences, Forward Completeness.- 6.3 Short Geodesics Are Minimizing.- 6.4 The Smoothness of Distance Functions.- 6.4 A. On Minkowski Spaces.- 6.4 B. On Finsler Manifolds.- 6.5 Long Minimizing Geodesies.- 6.6 The Hopf-Rinow Theorem.- *References for Chapter 6.- 7 The Index Form and the Bonnet-Myers Theorem.- 7.1 Conjugate Points.- 7.2 The Index Form.- 7.3 What Happens in the Absence of Conjugate Points?.- 7.3 A. Geodesies Are Shortest Among "Nearby" Curves.- 7.3 B. A Basic Index Lemma.- 7.4 What Happens If Conjugate Points Are Present?.- 7.5 The Cut Point Versus the First Conjugate Point.- 7.6 Ricci Curvatures.- 7.6 A. The Ricci Scalar Ric and the Ricci Tensor Ricij.- 7.6 B. The Interplay between Ric and RiCij.- 7.7 The Bonnet-Myers Theorem.- *References for Chapter 7.- 8 The Cut and Conjugate Loci, and Synge's Theorem.- 8.1 Definitions.- 8.2 The Cut Point and the First Conjugate Point.- 8.3 Some Consequences of the Inverse Function Theorem.- 8.4 The Manner in Which cy and iy Depend on y.- 8.5 Generic Properties of the Cut Locus Cutx.- 8.6 Additional Properties of Cutx When M Is Compact.- 8.7 Shortest Geodesics within Homotopy Classes.- 8.8 Synge's Theorem.- *References for Chapter 8.- 9 The Cartan-Hadamard Theorem and Rauch's First Theorem.- 9.1 Estimating the Growth of Jacobi Fields.- 9.2 When Do Local Diffeomorphisms Become Covering Maps?.- 9.3 Some Consequences of the Covering Homotopy Theorem.- 9.4 The Cartan-Hadamard Theorem.- 9.5 Prelude to Rauch's Theorem.- 9.5 A. Transplanting Vector Fields.- 9.5 B. A Second Basic Property of the Index Form.- 9.5 C. Flag Curvature Versus Conjugate Points.- 9.6 Rauch's First Comparison Theorem.- 9.7 Jacobi Fields on Space Forms.- 9.8 Applications of Rauch's Theorem.- *References for Chapter 9.- Three Special Finsler Spaces over the Reals.- 10 Berwald Spaces and Szabo's Theorem for Berwald Surfaces.- 10.0 Prologue.- 10.1 Berwald Spaces.- 10.2 Various Characterizations of Berwald Spaces.- 10.3 Examples of Berwald Spaces.- 10.4 A Fact about Flat Linear Connections.- 10.5 Characterizing Locally Minkowski Spaces by Curvature.- 10.6 Szabo's Rigidity Theorem for Berwald Surfaces.- 10.6 A. The Theorem and Its Proof.- 10.6 B. Distinguishing between y-local and y-global.- *References for Chapter 10.- 11 Randers Spaces and an Elegant Theorem.- 11.0 The Importance of Randers Spaces.- 11.1 Randers Spaces, Positivity, and Strong Convexity.- 11.2 A Matrix Result and Its Consequences.- 11.3 The Geodesic Spray Coefficients of a Randers Metric.- 11.4 The Nonlinear Connection for Randers Spaces.- 11.5 A Useful and Elegant Theorem.- 11.6 The Construction of y-global Berwald Spaces.- 11.6 A. The Algorithm.- 11.6 B. An Explicit Example in Three Dimensions.- *References for Chapter 11 309.- 12 Constant Flag Curvature Spaces and Akbar-Zadeh's Theorem.- 12.0 Prologue.- 12.1 Characterizations of Constant Flag Curvature.- 12.2 Useful Interpretations of ? and E.- 12.3 Growth Rates of Solutions of E + ? E = 0.- 12.4 Akbar-Zadeh's Rigidity Theorem.- 12.5 Formulas for Machine Computations of K.- 12.5 A. The Geodesic Spray Coefficients.- 12.5 B. The Predecessor of the Flag Curvature.- 12.5 C. Maple Codes for the Gaussian Curvature.- 12.6 A Poincare Disc That Is Only Forward Complete.- 12.6 A. The Example and Its Yasuda-Shimada Pedigree.- 12.6 B. The Finsler Function and Its Gaussian Curvature.- 12.6 C. Geodesics Forward and Backward Metric Discs.- 12.6 D. Consistency with Akbar-Zadeh's Rigidity Theorem.- 12.7 Non-Riemannian Projectively Flat S2 with K = 1.- 12.7 A. Bryant's 2-parameter Family of Finsler Structures.- 12.7 B. A Specific Finsler Metric from That Family.- *References for Chapter 12 350.- 13 Riemannian Manifolds and Two of Hopf's Theorems.- 13.1 The Levi-Civita (Christoffel) Connection.- 13.2 Curvature.- 13.2 A. Symmetries, Bianchi Identities, the Ricci Identity.- 13.2 B. Sectional Curvature.- 13.2 C. Ricci Curvature and Einstein Metrics.- 13.3Warped Products and Riemannian Space Forms.- 13.3 A. One Special Class of Warped Products.- 13.3 B. Spheres and Spaces of Constant Curvature.- 13.3 C. Standard Models of Riemannian Space Forms.- 13.4 Hopf's Classification of Riemannian Space Forms.- 13.5 The Divergence Lemma and Hopf's Theorem.- 13.6 The Weitzenbock Formula and the Bochner Technique.- *References for Chapter 13.- 14 Minkowski Spaces, the Theorems of Deicke and Brickell.- 14.1 Generalities and Examples.- 14.2 The Riemannian Curvature of Each Minkowski Space.- 14.3 The Riemannian Laplacian in Spherical Coordinates.- 14.4 Deicke's Theorem.- 14.5 The Extrinsic Curvature of the Level Spheres of F.- 14.6 The Gauss Equations.- 14.7 The Blaschke-Santalo Inequality.- 14.8 The Legendre Transformation.- 14.9 A Mixed-Volume Inequality, and Brickell's Theorem.- * References for Chapter 14.

1,726 citations


Network Information
Related Topics (5)
Lie group
18.3K papers, 381K citations
89% related
Cohomology
21.5K papers, 389.8K citations
89% related
Moduli space
15.9K papers, 410.7K citations
88% related
Symplectic geometry
18.2K papers, 363K citations
87% related
Conjecture
24.3K papers, 366K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023196
2022445
2021400
2020389
2019352
2018349