Topic

# Riemann curvature tensor

About: Riemann curvature tensor is a(n) research topic. Over the lifetime, 6248 publication(s) have been published within this topic receiving 138871 citation(s). The topic is also known as: Riemann–Christoffel tensor.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: In this paper, the Ricci form of some Kahler metric is shown to be closed and its cohomology class must represent the first Chern class of M. This conjecture of Calabi can be reduced to a problem in non-linear partial differential equation.

Abstract: Therefore a necessary condition for a (1,l) form ( G I a ' r r ) I,,, Rlr dz' A d? to be the Ricci form of some Kahler metric is that it must be closed and its cohomology class must represent the first Chern class of M. More than twenty years ago, E. Calabi [3] conjectured that the above necessary condition is in fact sufficient. This conjecture of Calabi can be reduced to a problem in non-linear partial differential equation.

2,650 citations

••

[...]

TL;DR: The necessary Slavnov identities are derived from Becchi-Rouet-Stora (BRS) transformations of the gravitational and Faddeev-Popov ghost fields.

Abstract: Gravitational actions which include terms quadratic in the curvature tensor are renormalizable. The necessary Slavnov identities are derived from Becchi-Rouet-Stora (BRS) transformations of the gravitational and Faddeev-Popov ghost fields. In general, non-gauge-invariant divergences do arise, but they may be absorbed by nonlinear renormalizations of the gravitational and ghost fields (and of the BRS transformations). Fortunately, these artifactual divergences may be eliminated by letting the coefficient of the harmonic gauge-fixing term tend to infinity, thus considerably simplifying the renormalization procedure. Coupling to other renormalizable fields may then be handled in a straightforward manner.

2,152 citations

••

[...]

TL;DR: In this paper, a spinor affine connection is proposed for general relativity by means of a tetrad or spinor formalism, which is applied to two problems in radiationtheory; a concise proof of a theorem of Goldberg and Sachs and a description of the asymptotic behavior of the Riemann tensor and metric tensor, for outgoing gravitational radiation.

Abstract: A new approach to general relativity by means of a tetrad or spinor formalism is presented. The essential feature of this approach is the consistent use of certain complex linear combinations of Ricci rotation coefficients which give, in effect, the spinor affine connection. It is applied to two problems in radiationtheory; a concise proof of a theorem of Goldberg and Sachs and a description of the asymptotic behavior of the Riemann tensor and metric tensor, for outgoing gravitational radiation.

2,105 citations

••

[...]

TL;DR: This paper proposes to endow the tensor space with an affine-invariant Riemannian metric and demonstrates that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries, the geodesic between two tensors and the mean of a set of tensors are uniquely defined.

Abstract: Tensors are nowadays a common source of geometric information. In this paper, we propose to endow the tensor space with an affine-invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors are uniquely defined, etc.
We have previously shown that the Riemannian metric provides a powerful framework for generalizing statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of missing data. For instance, most interpolation and Gaussian filtering schemes can be tackled efficiently through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our Riemannian framework, through partial differential evolution equations, provided that the metric of the tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute the gradient and Laplace-Beltrami operators. Finally, to enforce the fidelity to the data (either sparsely distributed tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian distance which are particularly simple and efficient to solve.

1,409 citations

••

[...]

TL;DR: In this paper, a notion of a length space X having nonnegative N-Ricci curvature, for N 2 [1;1], or having 1-RICci curvatures bounded below by K, for K2 R, was given.

Abstract: We dene a notion of a measured length space X having nonnegative N-Ricci curvature, for N 2 [1;1), or having1-Ricci curvature bounded below byK, forK2 R. The denitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space P2(X) of probability measures. We show that these properties are preserved under measured Gromov-Hausdor limits. We give geometric and analytic consequences. This paper has dual goals. One goal is to extend results about optimal transport from the setting of smooth Riemannian manifolds to the setting of length spaces. A second goal is to use optimal transport to give a notion for a measured length space to have Ricci curvature bounded below. We refer to [11] and [44] for background material on length spaces and optimal transport, respectively. Further bibliographic notes on optimal transport are in Appendix F. In the present introduction we motivate the questions that we address and we state the main results. To start on the geometric side, there are various reasons to try to extend notions of curvature from smooth Riemannian manifolds to more general spaces. A fairly general setting is that of length spaces, meaning metric spaces (X;d) in which the distance between two points equals the inmum of the lengths of curves joining the points. In the rest of this introduction we assume that X is a compact length space. Alexandrov gave a good notion of a length space having \curvature bounded below by K", with K a real number, in terms of the geodesic triangles in X. In the case of a Riemannian manifold M with the induced length structure, one recovers the Riemannian notion of having sectional curvature bounded below by K. Length spaces with Alexandrov curvature bounded below by K behave nicely with respect to the GromovHausdor topology on compact metric spaces (modulo isometries); they form

1,243 citations