scispace - formally typeset
Search or ask a question
Topic

Ring laser gyroscope

About: Ring laser gyroscope is a research topic. Over the lifetime, 2070 publications have been published within this topic receiving 18609 citations. The topic is also known as: Sagnac interferometer.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a three-sequence scheme and a reciprocating slow-rotation scheme are proposed to achieve the most inertial measurement error self-compensation, which is shown to reduce the heading-sensitive azimuth alignment error from 0.2268° to better than 0.0015° through scheme modification.
Abstract: As two-position is the most widely used scheme of multi-position alignment, azimuth error analysis regarding the whole alignment procedure as an entity is explicitly discussed. A formula to calculate an equivalent north accelerometer bias drift rate is developed. The effecting extent of each inertial measurement error is also theoretically deduced and validated through simulation. It is pointed out that the main error sources causing heading-sensitive azimuth error are accelerometer triad non-orthogonality and lever arm error. In a Kalman filter alignment algorithm, affected by the equivalent accelerometer bias change rate, extra azimuth error emerges from the mistake estimation of fiber-optic gyroscope drift. A three-sequence scheme and a reciprocating slow-rotation scheme are proposed to achieve the most inertial measurement error self-compensation. Theoretical error comparison and a turntable four-orientation alignment test show the superiority of the reciprocating slow-rotation scheme over the other two schemes. The heading-sensitive azimuth alignment error is reduced from 0.2268° to better than 0.0015° through scheme modification.
Proceedings ArticleDOI
30 May 2022
TL;DR: In this article , an integrated interrogator unit of an interferometric fiber-optic gyroscope (IFOG) system was realized using a DBR laser, passive couplers and PIN photodiodes.
Abstract: Recent advances in integration technologies enable constructing novel, highly complex and miniaturized photonic systems for a large variety of applications. A constantly increasing interest can be observed in implementing application specific photonic integrated circuits (ASPICs) in a new generation of optical sensing systems. The InP platform allows to realize complete interrogators of sensing systems, comprising the light sources and photodetectors. An InP PIC can also be used as a sensing element itself. In this work we discuss the sensing systems addressing two different application fields, which can benefit from the recent developments of InP platforms - optical gyroscopes and interrogators of fiber Bragg gratings. The principle of work of optical gyroscope is based on the Sagnac effect. Two typical configurations can be identified – interferometric fiber-optic gyroscope (IFOG) and ring laser gyroscope (RLG). An integrated interrogator unit of an IFOG system presented here was realized using a DBR laser, passive couplers and PIN photodiodes. Characterization results have proven the possibility of detection of the Sagnac signal for the length of the fiber loop of 1 km. We also discuss monolithic single-frequency lasers, which were realized in the framework of the development of an integrated optical gyro. Also, the integrated interrogators of fiber Bragg gratings are presented and discussed. The investigated solutions are based on the interrogation scheme in which a broadband signal is coupled to a network of FBGs, and the reflected signals are analyzed using a spectrometer based on an arrayed waveguide grating. Several realized circuits are discussed with respect to their design, characterization results and potential for application in sensing systems. Studies were funded by FOTECH-1 project granted by Warsaw University of Technology under the program Excellence Initiative: Research University (ID-UB). This work was partially supported by National Centre for Research and Development (PBS3/B9/41/2015).
Journal ArticleDOI
01 Aug 2022-Sensors
TL;DR: In this article , a dual-longitudinal-mode asymmetric frequency stabilization technique was proposed to stabilize the self-biasing state of a laser gyroscope, which is based on the accurate control of the intensity tuning curve in the prism ring laser.
Abstract: In order to stabilize the self-biasing state of a laser gyroscope, a dual-longitudinal-mode asymmetric frequency stabilization technique was studied. The special frequency stabilization is based on the accurate control of the intensity tuning curve in the prism ring laser. In this study, the effects of the ratio of the Ne isotopes, the inflation pressure, and the frequencies coupling on the intensity tuning curve in a laser gyro were examined. The profiles of the intensity tuning curve were simulated under the mixing ratios of Ne20 and Ne22 of 1:1 and 7:3, and the inflation pressures were 350 Pa, 400 Pa, and 450 Pa. The mixing ratio of Ne20 and Ne27 was dealt with similarly. The method for precisely adjusting the profiles of the intensity tuning curve was analyzed. The profiles were verified by experiments under different isotope ratios and pressures. Finally, based on a prism ring laser with an optical length of 0.47 m, the proposed frequency stabilization method was preliminarily verified.
Journal ArticleDOI
TL;DR: In this paper , the authors discuss the importance of the role of the environment in the development process of the internet and propose a method to improve the quality of the Internet for developing countries.
Abstract: 针对全反射棱镜式激光陀螺标度因数随温度周期性变化的现象,根据矩阵光学方法研究了稳频状态下温度变化对环形激光面积的影响,获得了全反射棱镜式激光陀螺标度因数与稳频电压的关系,并得出光束偏移是引起标度因数随温度周期性变化的原因。根据标度因数与稳频电压的关系,建立了全反射棱镜式激光陀螺标度因数补偿模型,通过实验对比了补偿前后标度因数的非线性度。结果表明,根据该补偿模型对全反射棱镜式激光陀螺标度因数进行补偿,标度因数非线性度提高了一个数量级以上,对提高全反射棱镜式激光陀螺的性能具有一定的参考价值。
Journal ArticleDOI
TL;DR: In this article , a method to identify and suppress the driving force misalignment angle for a MEMS gyroscope working either in amplitude modulated or Lissajous frequency modulated (LFM) mode using parametric excitation was proposed.
Abstract: We report for the first time an implementable method to identify and suppress the driving force misalignment angle for a MEMS gyroscope working either in amplitude modulated (AM) or Lissajous frequency modulated (LFM) mode using parametric excitation. By introducing driving force misalignment angle into gyroscope dynamic equations, we illustrate that gyroscope angular rate output is affected by driving force misalignment angle and cross-axis damping jointly. We propose parametric excitation as a way to both identify and calculate the driving force misalignment angle. The identification results for a gyroscope working in both AM and LFM mode are similar, which indicates the effectiveness of the proposed identification method. Instead of using traditional amplitude control loop by adjusting the driving force, we do the automatic gain control by adjusting the parametric pump voltage so that a fixed drive voltage can be used, which also indicates fixed force coupling. Experimental results show that after suppression, the bias instability (BI) of AM mode is improved from 4.7° h−1 to 2.3° h−1 and the BI of LFM mode is improved from 1.4° h−1 to 0.9° h−1 which is the lowest result reported for LFM gyroscope.

Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
75% related
Resonator
76.5K papers, 1M citations
73% related
Photonic crystal
43.4K papers, 887K citations
73% related
Filter (signal processing)
81.4K papers, 1M citations
72% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202347
202275
202130
202062
201963
201841