Topic

# Ring (mathematics)

About: Ring (mathematics) is a(n) research topic. Over the lifetime, 19980 publication(s) have been published within this topic receiving 233849 citation(s). The topic is also known as: ring possibly without identity.

##### Papers published on a yearly basis

##### Papers

More filters

•

30 Oct 1997

TL;DR: This chapter discusses decision problems and Complexity over a Ring and the Fundamental Theorem of Algebra: Complexity Aspects.

Abstract: 1 Introduction.- 2 Definitions and First Properties of Computation.- 3 Computation over a Ring.- 4 Decision Problems and Complexity over a Ring.- 5 The Class NP and NP-Complete Problems.- 6 Integer Machines.- 7 Algebraic Settings for the Problem "P ? NP?".- 8 Newton's Method.- 9 Fundamental Theorem of Algebra: Complexity Aspects.- 10 Bezout's Theorem.- 11 Condition Numbers and the Loss of Precision of Linear Equations.- 12 The Condition Number for Nonlinear Problems.- 13 The Condition Number in ?(H(d).- 14 Complexity and the Condition Number.- 15 Linear Programming.- 16 Deterministic Lower Bounds.- 17 Probabilistic Machines.- 18 Parallel Computations.- 19 Some Separations of Complexity Classes.- 20 Weak Machines.- 21 Additive Machines.- 22 Nonuniform Complexity Classes.- 23 Descriptive Complexity.- References.

1,542 citations

•

01 Jan 1966

Abstract: Introduction Chapter 1: Preparatory material 1. Multiplicative sequences 2. Sheaves 3. Fibre bundles 4. Characteristic classes Chapter 2: The cobordism ring 5. Pontrjagin numbers 6. The ring /ss(/Omega) /oplus //Varrho 7. The cobordism ring /omega 8. The index of a 4k-dimensional manifold 9. The virtual index Chapter 3: The Todd genus 10. Definiton of the Todd genus 11. The virutal generalised Todd genus 12. The t-characteristic of a GL(q, C)-bundle 13. Split manifolds and splitting methods 14. Multiplicative properties of the Todd genus Chapter 4: The Riemann-Roch theorem for algebraic manifolds 15. Cohomology of Compact complex manifolds 16. Further properties of the (/chi)x characteristics 17. The virtual (/chi)x characteristics 18. Some fundamental theorems of Kodaira 19. The virtual (/chi)x characteristics for algebraic manifolds 20. The Riemann-Roch theorem for algebraic manifolds and complex analytic line bundles 21. The Riemann-Roch theorem for algebraic manifolds and complex analytic vector bundles Appendix 1 by R.L.E. Schwarzenberger 22. Applications of the Riemann-Roch theorem 23. The Riemann-Roch theorem of Grothendieck 24. The Grothendieck ring of continuous vector bundles 25. The Atijah-Singer index theorem 26. Integrality theorems for differentiable manifolds Appendix 2 by A. Borel A spectral sequence for complex analytic bundles Bibliography Index

1,451 citations

••

1,341 citations

••

Abstract: This is the first of a series of papers dealing with the representation theory of artin algebras, where by an artin algebra we mean an artin ring having the property that its center is an artin ring and λ is a finitely generated module over its center. The over all purpose of this paper is to develop terminology and background material which will be used in the rest of the papers in the series. While it is undoubtedly true that much of this material can be found in the literature or easily deduced from results already in the literature, the particular development presented here appears to be new and is especially well suited as a foundation for the papers to come.

1,161 citations

••

TL;DR: The vacuum Einstein equations in five dimensions are shown to admit a solution describing a stationary asymptotically flat spacetime regular on and outside an event horizon of topology S1xS2, which describes a rotating "black ring".

Abstract: The vacuum Einstein equations in five dimensions are shown to admit a solution describing a stationary asymptotically flat spacetime regular on and outside an event horizon of topology ${S}^{1}\ifmmode\times\else\texttimes\fi{}{S}^{2}$. It describes a rotating ``black ring.'' This is the first example of a stationary asymptotically flat vacuum solution with an event horizon of nonspherical topology. The existence of this solution implies that the uniqueness theorems valid in four dimensions do not have simple five-dimensional generalizations. It is suggested that increasing the spin of a spherical black hole beyond a critical value results in a transition to a black ring, which can have an arbitrarily large angular momentum for a given mass.

1,047 citations