scispace - formally typeset
Search or ask a question
Topic

Riparian buffer

About: Riparian buffer is a research topic. Over the lifetime, 996 publications have been published within this topic receiving 32899 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 1984-Ecology
TL;DR: Nutrient removals in the riparian forest are thought to be of ecological significance to receiving waters and indicate that coupling natural systems and managed habitats within a watershed may reduce diffuse-source pollution.
Abstract: Nutrient (C, N, and P) concentration changes were measured in surface runoff and shallow groundwater as they moved through a small agricultural (cropland) watershed located in Maryland. During the study period (March 1981 to March 1982), dramatic changes in water-borne nutrient loads occurred in the riparian forest of the watershed. From surface runoff waters that had transited : 50 m of riparian forest, an estimated 4.1 Mg of particulates, 1I kg of particulate organic-N, 0.83 kg of ammonium-N, 2.7 kg of nitrate-N and 3.0 kg of total particulate-P per ha of riparian forest were removed during the study year. In addition, an estimated removal of 45 kg ha- yr-t of nitrate- N occurred in subsurface flow as it moved through the riparian zone. Nutrient uptake rates for the cropland and riparian forest were estimated. These systems were then compared with respect to their pathways of nutrient flow and ability to retain nutrients. The cropland appeared to retain fewer nutrients than the riparian forest and is thought to incur the majority of its nutrient losses in harvested crop. The dominant pathway of total-N loss from the riparian forest seemed to be subsurface flux. Total phosphorus loss from the riparian forest appeared almost evenly divided between surface and subsurface losses. Nutrient removals in the riparian forest are thought to be of ecological significance to receiving waters and indicate that coupling natural systems and managed habitats within a watershed may reduce diffuse-source pollution.

1,562 citations

Journal ArticleDOI
TL;DR: A review of the literature on riparian vegetated buffer strips (VBSs) for use in stream-water-quality restoration and limitations associated with their use are discussed in this article.
Abstract: SUMMARY 1 A review is presented of the literature on riparian vegetated buffer strips (VBS) for use in stream-water-quality restoration and limitations associated with their use are discussed. The results are also presented of recent investigations on the effectiveness of a forested and a grass vegetated buffer strip for reducing shallow subsurface inputs of nutrients from agriculture to a stream in central Illinois, U.S.A. 2 Because riparian zones link the stream with its terrestrial catchment, they can modify, incorporate, dilute, or concentrate substances before they enter a lotic system. In small to mid-size streams forested riparian zones can moderate temperatures, reduce sediment inputs, provide important sources of organic matter, and stabilize stream banks. 3 Several questions on the utility and efficiency of vegetated buffer strips for stream restoration still remain unanswered, including: what types (grass v forest) are most efficient; do they become nutrient saturated; are they only temporary sinks; how does species composition influence effectiveness; and, what is the optimal width of buffer to facilitate nutrient reduction under different conditions? 4 Water samples were collected (1989–90) from lysimeters located at three depths (60, 120, and > 120cm) in an upland area planted in conventional row crops (corn and soybean) and in three adjacent riparian buffer treatments, a 39m wide grass buffer. a 16 m wide mature forested buffer, and a buffer planted in row-crops to the stream bank. Concentrations of dissolved and total phosphorus and nitrate-N in each sample were determined following major precipitation events over a seventeen month period. 5 Both the forested and grass VBS reduced nitrate-N concentrations in shallow groundwater (up to 90% reduction). On an annual basis the forested VBS was more effective at reducing concentrations of nitrate-N than was the grass VBS, but was less efficient at retaining total and dissolved P. 6 During the dormant season, both grass and forested buffer strips released dissolved and total P to the groundwater. The VBS apparently acted as a nutrient sink for much of the year, but also released accumulated nutrients during the remaining portion of the year. Periodic harvesting of plant biomass may reduce the amount of P released during the dormant season. 7 VBSs are not as effective in agriculture areas with tile drained fields. Alternative restoration practices such as discharging drain tiles into wetlands constructed parallel to the stream channel may prove to be a more effective means of controlling non-point-source agricultural inputs of nutrients in such areas.

966 citations

Journal ArticleDOI
TL;DR: The critical loading for good ecological state in lakes has to be lowered in a future warmer climate, which calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones.
Abstract: Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

557 citations

Journal ArticleDOI
TL;DR: A meta-analysis of scientific literature containing data on riparian buffers and nitrogen concentration in streams and groundwater suggests that buffer width is an important consideration in managing nitrogen in watersheds, but the inconsistent effects of buffer width and vegetation on nitrogen removal suggest that soil type, subsurface hydrology, and subsurfaced biogeochemistry also are important factors governing nitrogen removal in buffers.
Abstract: Riparian buffers, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and reducing nitrogen loads entering water bodies. Riparian buffer width is thought to be positively related to nitrogen removal effectiveness by influencing nitrogen retention or removal. We surveyed the scientific literature containing data on riparian buffers and nitrogen concentration in streams and groundwater to identify trends between nitrogen removal effectiveness and buffer width, hydrological flow path, and vegetative cover. Nitrogen removal effectiveness varied widely. Wide buffers (>50 m) more consistently removed significant portions of nitrogen entering a riparian zone than narrow buffers (0-25 m). Buffers of various vegetation types were equally effective at removing nitrogen but buffers composed of herbaceous and forest/herbaceous vegetation were more effective when wider. Subsurface removal of nitrogen was efficient, but did not appear to be related to buffer width, while surface removal of nitrogen was partly related to buffer width. The mass of nitrate nitrogen removed per unit length of buffer did not differ by buffer width, flow path, or buffer vegetation type. Our meta-analysis suggests that buffer width is an important consideration in managing nitrogen in watersheds. However, the inconsistent effects of buffer width and vegetation on nitrogen removal suggest that soil type, subsurface hydrology (e.g., soil saturation, groundwater flow paths), and subsurface biogeochemistry (organic carbon supply, nitrate inputs) also are important factors governing nitrogen removal in buffers.

532 citations

Journal ArticleDOI
01 Sep 1997-Ecology
TL;DR: No significant change in species richness was detected as a result of the harvesting, except in the 1-ha connected fragments, where the number of species increased two years after isolation, suggesting that the adjacent buffer strips were being used as movement corridors.
Abstract: We studied the effect of habitat fragmentation on the richness, diversity, turnover, and abundance of breeding bird communities in old, boreal mixed-wood forest by creating isolated and connected forest fragments of 1, 10, 40, and 100 ha. Connected fragments were linked by 100 m wide riparian buffer strips. Each size class within treatments and controls was replicated three times. We sampled the passerine community using point counts before, and in each of two years after, forest harvesting, accumulating 21340 records representing 59 species. We detected no significant change in species richness as a result of the harvesting, except in the 1-ha connected fragments, where the number of species increased two years after isolation. This increase was accounted for by transient species, suggesting that the adjacent buffer strips were being used as movement corridors. Diversity (log series alpha index) was dependent on area in the isolated fragments only after cutting, having decreased in the smaller areas. Tur...

403 citations


Network Information
Related Topics (5)
Ecosystem
25.4K papers, 1.2M citations
84% related
Vegetation
49.2K papers, 1.4M citations
82% related
Soil water
97.8K papers, 2.9M citations
81% related
Soil organic matter
39.8K papers, 1.5M citations
81% related
Biodiversity
44.8K papers, 1.9M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
202250
202151
202042
201939
201842