scispace - formally typeset
Search or ask a question
Topic

River engineering

About: River engineering is a research topic. Over the lifetime, 435 publications have been published within this topic receiving 10286 citations. The topic is also known as: Channelisation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a numerical model, HYDROTREND, which generates synthetic time series of daily water discharge at a river outlet, was applied to the Yalu River to estimate flood annual exceedance probabilities and identify and quantify the impacts of climate change and human activity (runoff yield induced by deforestation and dam retention) on the flooding frequency and magnitude.
Abstract: . Accurate determination of past flooding characteristics is necessary to effectively predict the future flood disaster risk and dominant controls. However, understanding the effects of environmental forcing on past flooding frequency and magnitude is difficult owing to the deficiency of observations (data available for less than 10 % of the world's rivers) and extremely short measurement time series ( years). In this study, a numerical model, HYDROTREND, which generates synthetic time series of daily water discharge at a river outlet, was applied to the Yalu River to (1) reconstruct annual peak discharges over the past 1000 years and estimate flood annual exceedance probabilities and (2) identify and quantify the impacts of climate change and human activity (runoff yield induced by deforestation and dam retention) on the flooding frequency and magnitude. Climate data obtained from meteorological stations and ECHO-G climate model output, morphological characteristics (hypsometry, drainage area, river length, slope, and lapse rate), and hydrological properties (groundwater properties, canopy interception effects, cascade reservoir retention effect, and saturated hydraulic conductivity) form significant reliable model inputs. Monitored for decades, some proxies on ancient floods allow for accurate calibration and validation of numerical modeling. Simulations match well the present-day monitored data (1958–2012) and the literature records of historical flood events (1000–1958). They indicate that flood frequencies of the Yalu River increased during 1000–1940, followed by a decrease until the present day. Frequency trends were strongly modulated by climate variability, particularly by the intensity and frequency of rainfall events. The magnitudes of larger floods, events with a return period of 50 to 100 years, increased by 19.1 % and 13.9 %, respectively, due to climate variability over the last millennium. Anthropogenic processes were found to either enhance or reduce flooding, depending on the type of human activities. Deforestation increased the magnitude of larger floods (100- and 50-year floods) by 19.2 %–20.3 %, but the construction of cascade reservoirs in 1940 significantly reduced their magnitude by 36.7 % to 41.7 %. We conclude that under intensified climate change and human activities in the future, effective river engineering should be considered, particularly for small- and medium-sized mountainous river systems, which are at a higher risk of flood disasters owing to their relatively poor hydrological regulation capacity.

5 citations

Book
01 Jan 2017
TL;DR: In this article, the authors focus on river engineering (which is concerned with river works) and therefore, consider the river or watercourse as a natural or semi-natural corridor or infrastructure element.
Abstract: Working together with natural systems, which are powered by a diversity of life within them, provides a range of benefits to society, ranging from carbon storage, clean water and air to reduction of climate change impacts and protection against floods and other environmental hazards. This realisation has led to the concept of Green Infrastructure (GI): a network of natural and semi-natural features that intersperses and connects villages, towns and cities. Rivers are part of this green network, which has the potential to provide higher resilience and cost-effectiveness as well as more social and environmental benefits than conventional infrastructure. This document focuses on river engineering (which is concerned with river works) and therefore, we consider the river or watercourse as a natural or semi-natural corridor or infrastructure element. In this context, GI approaches are those that promote the conservation or restoration of the natural (green) character of our rivers. These approaches are fundamental to improving the water quality, morphology and ecosystems of rivers as well as contributing to an overall strategy to help people and communities adapt to the impacts of climate change.

5 citations

Book
01 Jan 1994
TL;DR: In this paper, the authors present an assessment of ecotoxicological effects restoration of fish stocks and river floodplains ecological river engineering conclusions and recommendations and make recommendations for river engineering.
Abstract: Biological communities in the river as affected by environmental changes emission and fate of pollutants control of accidental spills and clean-up measures assessment of ecotoxicological effects restoration of fish stocks and river floodplains ecological river engineering conclusions and recommendations. (Part contents).

5 citations


Network Information
Related Topics (5)
Surface runoff
45.1K papers, 1.1M citations
80% related
Groundwater
59.3K papers, 1M citations
77% related
Aquifer
41.4K papers, 778.5K citations
75% related
Sediment
48.7K papers, 1.2M citations
73% related
Water quality
67.1K papers, 945.1K citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202127
202029
201926
201813
201717
201616