scispace - formally typeset
Search or ask a question
Topic

RLC circuit

About: RLC circuit is a research topic. Over the lifetime, 14490 publications have been published within this topic receiving 142697 citations.


Papers
More filters
Patent
30 Dec 1971
TL;DR: In this paper, a multi-frequency resonant tag circuit is used for detecting and deactivating a retailer's electronic security system in a retail store, where the tag includes a fusible link integrally formed as part of the circuit and can be fused upon application of an electromagnetic field of predetermined magnitude at the deactivation frequency of the resonant circuit.
Abstract: An electronic security system especially adapted for use in retail stores and employing a multi-frequency resonant tag circuit having distinct frequencies for detection and deactivation. A transmitting system provides an electromagnetic field within a controlled area at a frequency which is swept through a range including the detection frequency of the resonant circuit. In the presence of a tag circuit within the controlled area and operative at the detection frequency, pulses are detected by a receiver which includes noise rejection circuitry for discriminating true signals from noise. The receipt of a predetermined number of signal pulses within a prescribed interval of time causes an alarm actuation. The resonant circuit is formed by printed circuit techniques as a relatively small tag which can be affixed to an article of merchandise. The tag includes a fusible link integrally formed as part of the circuit and which can be fused upon application of an electromagnetic field of predetermined magnitude at the deactivation frequency of the resonant circuit. Deactivation of the tag destroys the resonant properties of the tag at the detection frequency such that a deactivated tag produces no alarm when passing through a controlled area.

104 citations

Journal ArticleDOI
TL;DR: In this article, the RLC decoupling method is proposed for low-power, low voltage applications, which is especially suited for low voltage and low power applications, and both a theoretical and a practical approach are presented together with measurement results.
Abstract: A key issue in the successful integration of analog circuits is a stable analog power supply. Traditional on-chip decoupling methods exhibit transients in the supply or voltage drops and power losses. This paper introduces the RLC decoupling method that features an enhanced transient response while being especially suited for low-power, low voltage applications. Both a theoretical and a practical approach are presented together with measurement results. As the benefits of a stable local power supply can be lost by the inadequate connection of two subcircuits with relative variations on the local grounds, a differential approach of signal transfer is proposed. Furthermore, the effect of a good local decoupling can be deteriorated by substrate noise, so some attention is given to this problem too.

104 citations

Journal ArticleDOI
TL;DR: In this article, a two-part exposition of oscillation in piecewise-linear dynamical systems is presented, where the reader is guided from linear concepts and simple harmonic motion to nonlinear concepts and chaos.
Abstract: In this two-part exposition of oscillation in piecewise-linear dynamical systems, we guide the reader from linear concepts and simple harmonic motion to nonlinear concepts and chaos. By means of three worked examples, we bridge the gap from the familiar parallel RLC network to exotic nonlinear dynamical phenomena in Chua's circuit. Our goal is to stimulate the reader to think deeply about the fundamental nature of oscillation and to develop intuition into the chaos-producing mechanisms of nonlinear dynamics. In order to exhibit chaos, an autonomous circuit consisting of resistors, capacitors, and inductors must contain i) at least one nonlinear element ii) at least one locally active resistor iii) at least three energy-storage elements. Chua's circuit is the simplest electronic circuit that satisfies these criteria. In addition, this remarkable circuit is the only physical system for which the presence of chaos has been proven mathematically. We illustrate by theory, simulation, and laboratory experiment the concepts of equilibria, stability, local and global behavior, bifurcations, and steady-state solutions. >

104 citations

Patent
28 Apr 1997
TL;DR: In this paper, an integrated, tunable inductance network features a number of fixed inductors fabricated on a common substrate along with a switching network made up of a many micro-electromechanical (MEM) switches.
Abstract: An integrated, tunable inductance network features a number of fixed inductors fabricated on a common substrate along with a switching network made up of a number of micro-electromechanical (MEM) switches. The switches selectably interconnect the inductors to form an inductance network having a particular inductance value, which can be set with a high degree of precision when the inductors are configured appropriately. The preferred MEM switches introduce a very small amount of resistance, and the inductance network can thus have a high Q. The MEM switches and inductors can be integrated using common processing steps, reducing parasitic capacitance problems associated with wire bonds and prior art switches, increasing reliability, and reducing the space, weight and power requirements of prior art designs. The precisely tunable high-Q inductance network has wide applicability, such as in a resonant circuit which provides a narrow bandwidth frequency response which peaks at a specific predetermined frequency, making possible a highly selective performance low noise amplifier (LNA), or in an oscillator circuit so that a precise frequency of oscillation can be generated and changed as needed.

103 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
Amplifier
163.9K papers, 1.3M citations
87% related
Transistor
138K papers, 1.4M citations
85% related
CMOS
81.3K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202379
2022173
2021277
2020465
2019550
2018558