scispace - formally typeset
Search or ask a question
Topic

RLC circuit

About: RLC circuit is a research topic. Over the lifetime, 14490 publications have been published within this topic receiving 142697 citations.


Papers
More filters
Patent
02 Jun 1997
TL;DR: In this article, a surge suppressor for a radio frequency (RF) transmission line includes an a printed circuit board having a conductor for connection in series with a RF transmission line, which has a capacitance for passing RF signals and blocking transients.
Abstract: A surge suppressor for a radio frequency (RF) transmission line includes an a printed circuit board having a conductor for connection in series with a RF transmission line. The conductor has a capacitance for passing RF signals and blocking transients. To the printed circuit board are mounted a choke and a resistor, each of which is connected in series with the transmission line and in parallel to each other and to the capacitance of the conductor. The choke passes steady, direct current signals for powering equipment located on an antenna. The surge suppressor further includes first and second discharge stages connected to the conductor on opposite sides of the impedance. Each stage includes a discharge device connected to the conductor through a radio frequency choke or resonant circuit. The choke or resonant circuit blocks leakage of radio frequencies into the discharge devices. A gas discharge tube is used for the first stage, which is for connection to an antenna side of the surge suppressor. A solid state device, having a lower breakdown voltage than the gas discharge tube, is used in the second stage, which is for connection to voltage sensitive equipment. The resistor assists in isolating the first and second stages. The first stage further includes a second gas discharge tube having a breakdown voltage higher than the first gas discharge tube for use in warning of degradation of the first gas discharge tube.

60 citations

Patent
19 Jun 1997
TL;DR: An improved discharge lamp driving circuit of a charge-pump type capable of suppressing a ripple in an envelop of a lamp current at the time of dimming the lamp or at a low environmental temperature is described in this article.
Abstract: An improved discharge lamp driving circuit of a charge-pump type capable of suppressing a ripple in an envelop of a lamp current at the time of dimming the lamp or at a low environmental temperature. The circuit includes an inverter having switching elements Q1 and Q2 for converting a voltage across a smoothing capacitor Ce into a high frequency power which is applied through a resonant circuit to the discharge lamp Ld. A capacitor Cin is connected to one end of the resonant circuit to vary a DC voltage of the output of the rectifier in accordance with a varying instantaneous value of the high frequency current or voltage appearing in the resonant circuit. A control circuit is provided to give a control signal for alternately turning on and off the switching elements Q1 and Q2. A feedback circuit FB is provided to modulate the control signal within a permissible range given to the control circuit in such a manner as to adjust the timing of turning on and off the switching elements Q1 and Q2 in a feedback manner based upon a lamp current detected by a current sensor SI, for reducing the ripple in the lamp current. A mixer MX is included to compensate for the lamp current in consideration of a dimmer signal Dim of dimming the lamp in order to suppress the ripple which would otherwise increase due to the dimming of the lamp.

60 citations

Journal ArticleDOI
TL;DR: In this article, the effects of varying the electrode capacitance, resistance, or inductance on modulator performance are demonstrated, and results are compared with those measured using a swept-frequency technique.
Abstract: Lumped-element Mach-Zehnder interferometric modulators have been designed, fabricated in LiNbO 3 , tested and analyzed. These modulators had 3 dB bandwidths from 280 MHz to 2.75 GHz and V π 's from 1 V to 4 V, respectively. A simple RLC equivalent circuit is utilized to model the packaged modulator performance and results are compared with those measured using a swept-frequency technique. The model is seen to break down at the higher frequencies due to a frequency-dependent resistance and the electrode and parasitic inductances are seen to limit the overall modulator performance. The effects of varying the electrode capacitance, resistance, or inductance on modulator performance are demonstrated.

60 citations

Proceedings ArticleDOI
06 Apr 2009
TL;DR: In this article, the authors compared active and passive methods for LCL filter resonance damping; assesses their suitability for the high power active power filter application and presents their benefits and drawbacks.
Abstract: LCL-type filter possessing sufficient attenuation ratio for switching ripple with small LC parameters is appropriate to be used as output filter to get high slew rate of compensation current. However, LCL-filter, as a three order resonant circuit itself, is difficult to be stable. This paper compares active and passive methods for LCL filter resonance damping; assesses their suitability for the high power active power filter application and presents their benefits and drawbacks. The results presented show that both methods compensate harmonics effectively and attenuate switching ripple sufficiently. However, there are still some differences both in the filtering performance and the power losses in the high power application. The active methods require more sensors and increase algorithm complexity, while additional damping resistors are needed in the passive methods and result in large losses. Simulation validates the feasibility of the method proposed by this paper.

60 citations

Journal ArticleDOI
TL;DR: In this article, the characteristics of an asymmetrical duty cycle (ADC) controlled LCL-T resonant converter operating at the resonant frequency are studied by solving the state-space model of the converter.
Abstract: The characteristics of an asymmetrical duty cycle (ADC) controlled LCL-T resonant converter operating at the resonant frequency are studied by solving the state-space model of the converter. Four operating modes are identified having different circuit waveforms representing different device conduction sequences, thereby creating different conditions during the device switching. The mode boundaries are obtained and plotted on the D-Q plane. A region on the D-Q plane is identified for the converter design, where the switches operate under zero-voltage-switching condition. A prototype 500 W, 100 kHz converter is designed and built to experimentally demonstrate the operating modes, control characteristics, and performance of ADC-controlled LCL-T resonant converter.

60 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
Amplifier
163.9K papers, 1.3M citations
87% related
Transistor
138K papers, 1.4M citations
85% related
CMOS
81.3K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202379
2022173
2021277
2020465
2019550
2018558