scispace - formally typeset
Search or ask a question

Showing papers on "RNA published in 2010"


Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: This study developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs and revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions.

2,730 citations


Journal ArticleDOI
15 Apr 2010-Nature
TL;DR: Evidence is provided of inducing an RNAi mechanism of action in a human from the delivered siRNA and the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for anRNAi mechanism from a patient who received the highest dose of the nanoparticles.
Abstract: Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients. Long, double-stranded RNAs were first shown to mediate RNAi in Caenorhabditis elegans, and the potential use of RNAi for human therapy has been demonstrated by the finding that small interfering RNAs (siRNAs; approximately 21-base-pair double-stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response. We are at present conducting the first in-human phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumour biopsies from melanoma patients obtained after treatment show the presence of intracellularly localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is, to our knowledge, a first for systemically delivered nanoparticles of any kind). Furthermore, a reduction was found in both the specific messenger RNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) levels when compared to pre-dosing tissue. Most notably, we detect the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. Together, these data demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action.

2,331 citations


Journal ArticleDOI
06 Aug 2010-Cell
TL;DR: A model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes is proposed.

1,768 citations


Journal ArticleDOI
TL;DR: The P-body model outlines microRNA sorting and shuttling between specialized P- body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms.
Abstract: MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.

1,328 citations


Journal ArticleDOI
TL;DR: In this article, the authors found that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANrIL are found at elevated levels in prostate cancer tissues.

1,326 citations


Journal ArticleDOI
TL;DR: The molecular mechanisms by which antisense oligonucleotides can be designed to modulate RNA function in mammalian cells and how synthetic oligon nucleotides behave in the body are focused on.
Abstract: Dramatic advances in understanding of the roles RNA plays in normal health and disease have greatly expanded over the past 10 years and have made it clear that scientists are only beginning to comprehend the biology of RNAs. It is likely that RNA will become an increasingly important target for therapeutic intervention; therefore, it is important to develop strategies for therapeutically modulating RNA function. Antisense oligonucleotides are perhaps the most direct therapeutic strategy to approach RNA. Antisense oligonucleotides are designed to bind to the target RNA by well-characterized Watson-Crick base pairing, and once bound to the target RNA, modulate its function through a variety of postbinding events. This review focuses on the molecular mechanisms by which antisense oligonucleotides can be designed to modulate RNA function in mammalian cells and how synthetic oligonucleotides behave in the body.

1,153 citations


Journal ArticleDOI
TL;DR: There appears to be a negative correlation between mutation rate and genome size among RNA viruses, and nucleotide substitutions are on average four times more common than insertions/deletions (indels) in retroviruses.
Abstract: Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 10 8 to10 6 s/n/c for DNA viruses and from 10 6 to 10 4 s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mutation rate and genome size among RNA viruses, but this result requires further experimental testing. Contrary to some suggestions, the mutation rate of retroviruses is not lower than that of other RNA viruses. We also show that nucleotide substitutions are on average four times more common than insertions/deletions (indels). Finally, we provide estimates of the mutation rate per nucleotide per strand copying, which tends to be lower than that per cell infection because some viruses undergo several rounds of copying per cell, particularly double-stranded DNA viruses. A regularly updated virus mutation rate data set will be available at www.uv.es/rsanjuan/virmut.

1,096 citations


Journal ArticleDOI
11 Mar 2010-Nature
TL;DR: A novel differential approach selective for the 5′ end of primary transcripts is presented, establishing a paradigm for mapping and annotating the primary transcriptomes of many living species and discovering hundreds of transcriptional start sites within operons, and opposite to annotated genes.
Abstract: Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.

1,094 citations


Journal ArticleDOI
TL;DR: Recent findings that indicate new functions for A-->I editing in the regulation of noncoding RNAs and for interactions between RNA editing and RNA interference mechanisms are reviewed.
Abstract: One type of RNA editing converts adenosines to inosines (A-->I editing) in double-stranded RNA (dsRNA) substrates. A-->I RNA editing is mediated by adenosine deaminase acting on RNA (ADAR) enzymes. A-->I RNA editing of protein-coding sequences of a limited number of mammalian genes results in recoding and subsequent alterations of their functions. However, A-->I RNA editing most frequently targets repetitive RNA sequences located within introns and 5' and 3' untranslated regions (UTRs). Although the biological significance of noncoding RNA editing remains largely unknown, several possibilities, including its role in the control of endogenous short interfering RNAs (esiRNAs), have been proposed. Furthermore, recent studies have revealed that the biogenesis and functions of certain microRNAs (miRNAs) are regulated by the editing of their precursors. Here, I review the recent findings that indicate new functions for A-->I editing in the regulation of noncoding RNAs and for interactions between RNA editing and RNA interference mechanisms.

1,071 citations


01 Nov 2010
TL;DR: The mixture-of-isoforms (MISO) model is developed, a statistical model that estimates expression of alternatively spliced exons and isoforms and assesses confidence in these estimates, providing a probabilistic framework for RNA-seq analysis and functional insights into pre-mRNA processing.
Abstract: Through alternative splicing, most human genes express multiple isoforms that often differ in function To infer isoform regulation from high-throughput sequencing of cDNA fragments (RNA-seq), we developed the mixture-of-isoforms (MISO) model, a statistical model that estimates expression of alternatively spliced exons and isoforms and assesses confidence in these estimates Incorporation of mRNA fragment length distribution in paired-end RNA-seq greatly improved estimation of alternative-splicing levels MISO also detects differentially regulated exons or isoforms Application of MISO implicated the RNA splicing factor hnRNP H1 in the regulation of alternative cleavage and polyadenylation, a role that was supported by UV cross-linking-immunoprecipitation sequencing (CLIP-seq) analysis in human cells Our results provide a probabilistic framework for RNA-seq analysis, give functional insights into pre-mRNA processing and yield guidelines for the optimal design of RNA-seq experiments for studies of gene and isoform expression

1,064 citations


Journal ArticleDOI
TL;DR: TRIzol solubilization and extraction is a relatively recently developed general method for deproteinizing RNA, which is particularly advantageous in situations where cells or tissues are enriched for endogenous RNases or when separation of cytoplasmic RNA from nuclear RNA is impractical.
Abstract: TRIzol solubilization and extraction is a relatively recently developed general method for deproteinizing RNA. This method is particularly advantageous in situations where cells or tissues are enriched for endogenous RNases or when separation of cytoplasmic RNA from nuclear RNA is impractical. TRIzol (or TRI Reagent) is a monophasic solution of phenol and guanidinium isothiocyanate that simultaneously solubilizes biological material and denatures protein. After solubilization, the addition of chloroform causes phase separation (much like extraction with phenol:chloroform:isoamyl alcohol), where protein is extracted to the organic phase, DNA resolves at the interface, and RNA remains in the aqueous phase. Therefore, RNA, DNA, and protein can be purified from a single sample (hence, the name TRIzol). TRIzol extraction is also an effective method for isolating small RNAs, such as microRNAs, piwi-associated RNAs, or endogeneous, small interfering RNAs. However, TRIzol is expensive and RNA pellets can be difficult to resuspend. Thus, the use of TRIzol is not recommend when regular phenol extraction is practical.

Journal ArticleDOI
TL;DR: A RIP-seq method is developed to capture thePRC2 transcriptome and identify a genome-wide pool of >9000 PRC2-interacting RNAs in embryonic stem cells, some of which may be used as biomarkers and therapeutic targets for human disease.

Journal ArticleDOI
TL;DR: The mechanisms of CRISPR interference and its roles in microbial physiology and evolution are reviewed and potential applications of this novel interference pathway are discussed.
Abstract: Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs — small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway.

Journal ArticleDOI
TL;DR: The results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRil expression and/or structure.
Abstract: Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure.

Journal ArticleDOI
TL;DR: Recent studies on the features of viral siRNAs and other virus-derived small RNAs from virus-infected fungi, plants, insects, nematodes and vertebrates are reviewed and the innate and adaptive properties of RNA-based antiviral immunity are discussed.
Abstract: In eukaryotic RNA-based antiviral immunity, viral double-stranded RNA is recognized as a pathogen-associated molecular pattern and processed into small interfering RNAs (siRNAs) by the host ribonuclease Dicer. After amplification by host RNA-dependent RNA polymerases in some cases, these virus-derived siRNAs guide specific antiviral immunity through RNA interference and related RNA silencing effector mechanisms. Here, I review recent studies on the features of viral siRNAs and other virus-derived small RNAs from virus-infected fungi, plants, insects, nematodes and vertebrates and discuss the innate and adaptive properties of RNA-based antiviral immunity.

Journal ArticleDOI
02 Sep 2010-Nature
TL;DR: A novel strategy termed parallel analysis of RNA structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, is described, thus providing simultaneous in vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution.
Abstract: The structures of RNA molecules are often important for their function and regulation, yet there are no experimental techniques for genome-scale measurement of RNA structure. Here we describe a novel strategy termed parallel analysis of RNA structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, thus providing simultaneous in vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution. We apply PARS to profile the secondary structure of the messenger RNAs (mRNAs) of the budding yeast Saccharomyces cerevisiae and obtain structural profiles for over 3,000 distinct transcripts. Analysis of these profiles reveals several RNA structural properties of yeast transcripts, including the existence of more secondary structure over coding regions compared with untranslated regions, a three-nucleotide periodicity of secondary structure across coding regions and an anti-correlation between the efficiency with which an mRNA is translated and the structure over its translation start site. PARS is readily applicable to other organisms and to profiling RNA structure in diverse conditions, thus enabling studies of the dynamics of secondary structure at a genomic scale.

Journal ArticleDOI
TL;DR: It is discussed how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
Abstract: Recently, MYC has been shown to serve as a direct regulator of ribosome biogenesis and therefore coordinates protein synthesis. Could the regulation of ribosome biogenesis by MYC be necessary for its role in tumorigenesis? MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.

Journal ArticleDOI
TL;DR: Many methods and tools are available for preprocessing high-throughput RNA sequencing data and detecting differential expression and in doing so improving the quality of results and reducing the number of errors.
Abstract: Many methods and tools are available for preprocessing high-throughput RNA sequencing data and detecting differential expression.

Journal ArticleDOI
18 Nov 2010-Nature
TL;DR: It is demonstrated that a West Nile virus mutant that lacks 2′-O MTase activity was attenuated in wild-type primary cells and mice but was pathogenic in the absence of type I interferon (IFN) signalling, and suggested an evolutionary explanation for 2-O methylation of cellular mRNA: to distinguish self from non-self RNA.
Abstract: Cellular messenger RNA (mRNA) of higher eukaryotes and many viral RNAs are methylated at the N-7 and 2'-O positions of the 5' guanosine cap by specific nuclear and cytoplasmic methyltransferases (MTases), respectively. Whereas N-7 methylation is essential for RNA translation and stability, the function of 2'-O methylation has remained uncertain since its discovery 35 years ago. Here we show that a West Nile virus (WNV) mutant (E218A) that lacks 2'-O MTase activity was attenuated in wild-type primary cells and mice but was pathogenic in the absence of type I interferon (IFN) signalling. 2'-O methylation of viral RNA did not affect IFN induction in WNV-infected fibroblasts but instead modulated the antiviral effects of IFN-induced proteins with tetratricopeptide repeats (IFIT), which are interferon-stimulated genes (ISGs) implicated in regulation of protein translation. Poxvirus and coronavirus mutants that lacked 2'-O MTase activity similarly showed enhanced sensitivity to the antiviral actions of IFN and, specifically, IFIT proteins. Our results demonstrate that the 2'-O methylation of the 5' cap of viral RNA functions to subvert innate host antiviral responses through escape of IFIT-mediated suppression, and suggest an evolutionary explanation for 2'-O methylation of cellular mRNA: to distinguish self from non-self RNA. Differential methylation of cytoplasmic RNA probably serves as an example for pattern recognition and restriction of propagation of foreign viral RNA in host cells.

Journal ArticleDOI
TL;DR: It is demonstrated that the combination of Zn2+ and PT at low concentrations reduces the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture and efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses.
Abstract: Increasing the intracellular Zn2+ concentration with zinc-ionophores like pyrithione (PT) can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn2+ and PT at low concentrations (2 µM Zn2+ and 2 µM PT) inhibits the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp), which is the core enzyme of their multiprotein replication and transcription complex (RTC). Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV—thus eliminating the need for PT to transport Zn2+ across the plasma membrane—we show that Zn2+ efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9) purified from E. coli subsequently revealed that Zn2+ directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn2+ was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn2+ with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.

Journal ArticleDOI
14 May 2010-Science
TL;DR: In Arabidopsis, both exogenous and endogenous small interfering RNAs (siRNAs), rather than their long double-stranded precursor RNAs, are the molecules that transfer information between plant cells and represent a mechanism for transmitting the specification of epigenetic modification.
Abstract: A silencing signal in plants with an RNA specificity determinant moves through plasmodesmata and the phloem To identify the mobile RNA, we grafted Arabidopsis thaliana shoots to roots that would be a recipient for the silencing signal Using mutants that block small RNA (sRNA) biogenesis in either source or recipient tissue, we found that transgene-derived sRNA as well as a substantial proportion of the endogenous sRNA had moved across the graft union, and we provide evidence that 24-nucleotide mobile sRNAs direct epigenetic modifications in the genome of the recipient cells Mobile sRNA thus represents a mechanism for transmitting the specification of epigenetic modification and could affect genome defense and responses to external stimuli that have persistent effects in plants

Journal ArticleDOI
10 Sep 2010-Science
TL;DR: The RNA recognition mechanism identified here explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases.
Abstract: Many bacteria and archaea contain clustered regularly interspaced short palindromic repeats (CRISPRs) that confer resistance to invasive genetic elements. Central to this immune system is the production of CRISPR-derived RNAs (crRNAs) after transcription of the CRISPR locus. Here, we identify the endoribonuclease (Csy4) responsible for CRISPR transcript (pre-crRNA) processing in Pseudomonas aeruginosa. A 1.8 angstrom crystal structure of Csy4 bound to its cognate RNA reveals that Csy4 makes sequence-specific interactions in the major groove of the crRNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these enable Csy4 to bind selectively and cleave pre-crRNAs using phylogenetically conserved serine and histidine residues in the active site. The RNA recognition mechanism identified here explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases.

Journal ArticleDOI
TL;DR: A platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA is presented, in which a target microRNA is first hybridized to a probe and enriched through binding to the viral protein p19.
Abstract: Small RNA molecules have an important role in gene regulation and RNA silencing therapy, but it is challenging to detect these molecules without the use of time-consuming radioactive labelling assays or error-prone amplification methods. Here, we present a platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA. In this platform, a target microRNA is first hybridized to a probe. This probe:microRNA duplex is then enriched through binding to the viral protein p19. Finally, the abundance of the duplex is quantified using a nanopore. Reducing the thickness of the membrane containing the nanopore to 6 nm leads to increased signal amplitudes from biomolecules, and reducing the diameter of the nanopore to 3 nm allows the detection and discrimination of small nucleic acids based on differences in their physical dimensions. We demonstrate the potential of this approach by detecting picogram levels of a liver-specific miRNA from rat liver RNA.

Journal ArticleDOI
TL;DR: Advances in technologies for characterizing RNA populations are revealing increasingly complete descriptions of RNA regulation and complexity, yielding transcriptome-wide insights into mechanisms of RNA processing and providing new insights into molecular cell biology and disease.
Abstract: In recent years views of eukaryotic gene expression have been transformed by the finding that enormous diversity can be generated at the RNA level. Advances in technologies for characterizing RNA populations are revealing increasingly complete descriptions of RNA regulation and complexity; for example, through alternative splicing, alternative polyadenylation and RNA editing. New biochemical strategies to map protein-RNA interactions in vivo are yielding transcriptome-wide insights into mechanisms of RNA processing. These advances, combined with bioinformatics and genetic validation, are leading to the generation of functional RNA maps that reveal the rules underlying RNA regulation and networks of biologically coherent transcripts. Together these are providing new insights into molecular cell biology and disease.

Journal ArticleDOI
TL;DR: DNA microarray analysis in Malat1‐depleted neuroblastoma cells indicates that Malat 1 controls the expression of genes involved not only in nuclear processes, but also in synapse function, suggesting that Mal at1 regulates synapse formation by modulating the expressionof genes involved in synapses formation and/or maintenance.
Abstract: A growing number of long nuclear-retained non-coding RNAs (ncRNAs) have recently been described. However, few functions have been elucidated for these ncRNAs. Here, we have characterized the function of one such ncRNA, identified as metastasis-associated lung adenocarcinoma transcript 1 (Malat1). Malat1 RNA is expressed in numerous tissues and is highly abundant in neurons. It is enriched in nuclear speckles only when RNA polymerase II-dependent transcription is active. Knock-down studies revealed that Malat1 modulates the recruitment of SR family pre-mRNA-splicing factors to the transcription site of a transgene array. DNA microarray analysis in Malat1-depleted neuroblastoma cells indicates that Malat1 controls the expression of genes involved not only in nuclear processes, but also in synapse function. In cultured hippocampal neurons, knock-down of Malat1 decreases synaptic density, whereas its over-expression results in a cell-autonomous increase in synaptic density. Our results suggest that Malat1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance.

Journal ArticleDOI
TL;DR: In this paper, the authors review techniques for constructing RNA nanoparticles from different building blocks, describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine.
Abstract: Like DNA, RNA can be designed and manipulated to produce a variety of different nanostructures. Moreover, RNA has a flexible structure and possesses catalytic functions that are similar to proteins. Although RNA nanotechnology resembles DNA nanotechnology in many ways, the base-pairing rules for constructing nanoparticles are different. The large variety of loops and motifs found in RNA allows it to fold into numerous complicated structures, and this diversity provides a platform for identifying viable building blocks for various applications. The thermal stability of RNA also allows the production of multivalent nanostructures with defined stoichiometry. Here we review techniques for constructing RNA nanoparticles from different building blocks, we describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine. We also offer some perspectives on the yield and cost of RNA production.

Journal ArticleDOI
TL;DR: The present data suggest that LGP2 facilitates viral RNA recognition by RIG-I and MDA5 through its ATPase domain.
Abstract: RNA virus infection is recognized by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), RIG-I, and melanoma differentiation-associated gene 5 (MDA5) in the cytoplasm RLRs are comprised of N-terminal caspase-recruitment domains (CARDs) and a DExD/H-box helicase domain The third member of the RLR family, LGP2, lacks any CARDs and was originally identified as a negative regulator of RLR signaling In the present study, we generated mice lacking LGP2 and found that LGP2 was required for RIG-I- and MDA5-mediated antiviral responses In particular, LGP2 was essential for type I IFN production in response to picornaviridae infection Overexpression of the CARDs from RIG-I and MDA5 in Lgp2(-/-) fibroblasts activated the IFN-beta promoter, suggesting that LGP2 acts upstream of RIG-I and MDA5 We further examined the role of the LGP2 helicase domain by generating mice harboring a point mutation of Lys-30 to Ala (Lgp2 (K30A/K30A)) that abrogated the LGP2 ATPase activity Lgp2 (K30A/K30A) dendritic cells showed impaired IFN-beta productions in response to various RNA viruses to extents similar to those of Lgp2(-/-) cells Lgp2(-/-) and Lgp2 (K30A/K30A) mice were highly susceptible to encephalomyocarditis virus infection Nevertheless, LGP2 and its ATPase activity were dispensable for the responses to synthetic RNA ligands for MDA5 and RIG-I Taken together, the present data suggest that LGP2 facilitates viral RNA recognition by RIG-I and MDA5 through its ATPase domain

Journal ArticleDOI
28 May 2010-Cell
TL;DR: It is shown how RNA viruses can manipulate multiple components of the cellular secretory pathway to generate organelles specialized for replication that are distinct in protein and lipid composition from the host cell.

Journal ArticleDOI
16 Apr 2010-Cell
TL;DR: The results delineate the mechanism of RIG-I activation, identify CARD domains as a ubiquitin sensor, and demonstrate that unanchored K63-polyubiquitin chains are signaling molecules in antiviral innate immunity.

Journal ArticleDOI
TL;DR: It is established that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.
Abstract: Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles For other viruses, germ line integration has only rarely been documented Nonetheless, we identified endogenous viral elements (EVEs) derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA For one element in the primate lineage, we provide statistically robust evidence for exaptation Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized