scispace - formally typeset
Search or ask a question

Showing papers on "RNA published in 2017"


Journal ArticleDOI
15 Jun 2017-Cell
TL;DR: Roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes are revealed.

1,855 citations


Journal ArticleDOI
TL;DR: The emerging functions and association of lncRNAs in different types of cancer and their potential implications in cancer diagnosis and therapy are reviewed.
Abstract: In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.

1,800 citations


Journal ArticleDOI
12 Oct 2017-Nature
TL;DR: It is demonstrated that the class 2 type VI RNA-guided RNA-targeting CRISPR–Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding and is established as a flexible platform for studying RNA in mammalian cells and therapeutic development.
Abstract: RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference can efficiently knockdown RNAs, but it is prone to off-target effects, and visualizing RNAs typically relies on the introduction of exogenous tags. Here we demonstrate that the class 2 type VI RNA-guided RNA-targeting CRISPR-Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.

1,274 citations


Journal ArticleDOI
TL;DR: This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage and provides a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas 9-based therapies against genetic diseases.
Abstract: Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems employ the dual RNA–guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9–DNA interactions, and associated conformational changes. The use of CRISPR–Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)–CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural...

1,158 citations


Journal ArticleDOI
24 Nov 2017-Science
TL;DR: A type VI CRISPR-Cas system containing the programmable single-effector RNA-guided ribonuclease Cas13 is profiled in order to engineer a Cas13 ortholog capable of robust knockdown and REPAIR presents a promising RNA-editing platform with broad applicability for research, therapeutics, and biotechnology.
Abstract: Nucleic acid editing holds promise for treating genetic disease, particularly at the RNA level, where disease-relevant sequences can be rescued to yield functional protein products. Type VI CRISPR-Cas systems contain the programmable single-effector RNA-guided ribonuclease Cas13. We profiled type VI systems in order to engineer a Cas13 ortholog capable of robust knockdown and demonstrated RNA editing by using catalytically inactive Cas13 (dCas13) to direct adenosine-to-inosine deaminase activity by ADAR2 (adenosine deaminase acting on RNA type 2) to transcripts in mammalian cells. This system, referred to as RNA Editing for Programmable A to I Replacement (REPAIR), which has no strict sequence constraints, can be used to edit full-length transcripts containing pathogenic mutations. We further engineered this system to create a high-specificity variant and minimized the system to facilitate viral delivery. REPAIR presents a promising RNA-editing platform with broad applicability for research, therapeutics, and biotechnology.

1,095 citations


Journal ArticleDOI
TL;DR: All three YTHDF proteins may act in an integrated and cooperative manner to impact fundamental biological processes related to m6A RNA methylation in the cytoplasm.
Abstract: N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in cell differentiation and tissue development. It regulates multiple steps throughout the RNA life cycle including RNA processing, translation, and decay, via the recognition by selective binding proteins. In the cytoplasm, m6A binding protein YTHDF1 facilitates translation of m6A-modified mRNAs, and YTHDF2 accelerates the decay of m6A-modified transcripts. The biological function of YTHDF3, another cytoplasmic m6A binder of the YTH (YT521-B homology) domain family, remains unknown. Here, we report that YTHDF3 promotes protein synthesis in synergy with YTHDF1, and affects methylated mRNA decay mediated through YTHDF2. Cells deficient in all three YTHDF proteins experience the most dramatic accumulation of m6A-modified transcripts. These results indicate that together with YTHDF1 and YTHDF2, YTHDF3 plays critical roles to accelerate metabolism of m6A-modified mRNAs in the cytoplasm. All three YTHDF proteins may act in an integrated and cooperative manner to impact fundamental biological processes related to m6A RNA methylation.

1,094 citations


Journal ArticleDOI
TL;DR: The R/Bioconductor package scater is developed to facilitate rigorous pre‐processing, quality control, normalization and visualization of scRNA‐seq data and provides a convenient, flexible workflow to process raw sequencing reads into a high‐quality expression dataset ready for downstream analysis.
Abstract: Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalization.We have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalization and visualization of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development.The open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater .davis@ebi.ac.uk.Supplementary data are available at Bioinformatics online.

1,093 citations


Journal ArticleDOI
TL;DR: A review of recent research shows that circular RNAs may function as potential molecular markers for disease diagnosis and treatment and play an important role in the initiation and progression of human diseases, especially in tumours.
Abstract: Circular RNAs, a novel class of endogenous noncoding RNAs, are characterized by their covalently closed loop structures without a 5′ cap or a 3′ Poly A tail. Although the mechanisms of circular RNAs’ generation and function are not fully clear, recent research has shown that circular RNAs may function as potential molecular markers for disease diagnosis and treatment and play an important role in the initiation and progression of human diseases, especially in tumours. This review summarizes some information about categories, biogenesis, functions at the molecular level, properties of circular RNAs and the possibility of circular RNAs as biomarkers in cancers.

1,072 citations


Journal ArticleDOI
22 Sep 2017-Science
TL;DR: It is suggested that neuronal Cdr1as stabilizes or transports miR-7, which in turn represses genes that are early responders to different stimuli, and that CDR1as modulates neuronal activity in the human brain.
Abstract: INTRODUCTION Recently, a special class of RNAs has excited researchers and triggered hundreds of now-published studies. Known as circular RNAs (circRNAs), these RNAs are produced by regular transcription from genomic DNA, but the two ends of the (usually) exonic transcripts are covalently closed, probably in most cases by noncanonical splice reactions. Most circRNAs are expressed in the cytoplasm and are unusually stable, suggesting that they may have functions that diverge from those of canonical messenger RNAs (mRNAs) or long noncoding RNAs (lncRNAs). CircRNAs tend to be weakly expressed, but there are exceptions in animal brains. For example, in the mouse brain, a few hundred circRNAs are highly expressed, often with developmentally specific expression patterns that are conserved in the human brain. We previously proposed that circRNAs may, at least sometimes, serve as regulatory RNAs. A circRNA discovered by the Kjems laboratory, CDR1as, caught our attention because it was covered with >70 binding sites for the microRNA (miRNA) miR-7. Our data suggested that CDR1as might serve to alter the free concentration of miR-7. But what really is the function of CDR1as? RATIONALE We first determined which miRNAs specifically bind Cdr1as in postmortem human and mouse brains and characterized Cdr1as expression patterns. Once we had that information, we removed Cdr1as from the mouse genome to study the molecular and behavioral consequences. RESULTS We show that Cdr1as is, in the human brain, directly and massively bound by miR-7 and miR-671. In fact, Cdr1as is one of the most common transcripts targeted by miRNAs out of all brain mRNAs or lncRNAs. The expression of miRNAs was generally unperturbed in Cdr1as knockout (KO) mice, with the exception of the two miRNAs that directly interact with Cdr1as, miR-7 and miR-671, which were respectively down-regulated and up-regulated. This perturbation was posttranscriptional, consistent with a model in which Cdr1as interacts with these miRNAs in the cytoplasm. We show that Cdr1as is highly expressed (hundreds of copies within neurons) in somas and neurites, but not in glial cells. The expression of many immediate early genes (IEGs), which are markers of neuronal activity, was consistently up-regulated in KO animals. For example, c-Fos and a few other miR-7 targets were up-regulated, suggesting that IEG up-regulation can in part be explained by miR-7 down-regulation and that Cdr1as modulates neuronal activity. Cdr1as KO mice showed a strong deficit in prepulse inhibition of the startle response, a sensorimotor gating phenotype that is impaired in several human neuropsychiatric disorders. Electrophysiological measurements indicated an increase in spontaneous vesicle release in Cdr1as KO neurons, suggesting that Cdr1as plays a role in regulating synaptic transmission. CONCLUSION Mechanistically, our data indicate that Cdr1as regulates miR-7 stability or transport in neurons, whereas miR-671 regulates Cdr1as levels. Functionally, our data suggest that Cdr1as and its direct interactions with miRNAs are important for sensorimotor gating and synaptic transmission. More generally, because the brain is an organ with exceptionally high and diverse expression of circRNAs, our data suggest the existence of a previously unknown layer of biological functions carried out by circRNAs.

879 citations


Journal ArticleDOI
TL;DR: In this article, the expression profile and function of circRNAs in human hepatocellular carcinoma (HCC) remain to be investigated, and the authors used a biotin-labeled circMTO1 probe to perform RNA in vivo precipitation in HCC cells.

862 citations


Journal ArticleDOI
TL;DR: In this paper, a massively parallel single-nucleus RNA sequencing (sNuc-seq) with droplet technology is proposed. But it does not provide high throughput, and it is not suitable for high-dimensional data.
Abstract: Single-nucleus RNA sequencing (sNuc-seq) profiles RNA from tissues that are preserved or cannot be dissociated, but it does not provide high throughput. Here, we develop DroNc-seq: massively parallel sNuc-seq with droplet technology. We profile 39,111 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient, and unbiased classification of cell types, paving the way for systematic charting of cell atlases.

Journal ArticleDOI
02 Aug 2017
TL;DR: Favipiravir is an anti-viral agent that selectively and potently inhibits the RNA-dependent RNA polymerase (RdRp) of RNA viruses, which is effective against a wide range of types and subtypes of influenza viruses, including strains resistant to existing anti-influenza drugs.
Abstract: Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is an anti-viral agent that selectively and potently inhibits the RNA-dependent RNA polymerase (RdRp) of RNA viruses. Favipiravir was discovered through screening chemical library for anti-viral activity against the influenza virus by Toyama Chemical Co., Ltd. Favipiravir undergoes an intracellular phosphoribosylation to be an active form, favipiravir-RTP (favipiravir ribofuranosyl-5'-triphosphate), which is recognized as a substrate by RdRp, and inhibits the RNA polymerase activity. Since the catalytic domain of RdRp is conserved among various types of RNA viruses, this mechanism of action underpins a broader spectrum of anti-viral activities of favipiravir. Favipiravir is effective against a wide range of types and subtypes of influenza viruses, including strains resistant to existing anti-influenza drugs. Of note is that favipiravir shows anti-viral activities against other RNA viruses such as arenaviruses, bunyaviruses and filoviruses, all of which are known to cause fatal hemorrhagic fever. These unique anti-viral profiles will make favipiravir a potentially promising drug for specifically untreatable RNA viral infections.

Journal ArticleDOI
TL;DR: This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further the understanding of the biological processes of this plant model but also of other species.
Abstract: Summary The flowering plant Arabidopsis thaliana is a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, including mRNA, the various classes of non-coding RNA, and small RNA. The TAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago. Maintaining the accuracy of the annotation continues to be a prerequisite for future progress. Using an integrative annotation pipeline, we assembled tissue-specific RNA-Seq libraries from 113 datasets and constructed 48 359 transcript models of protein-coding genes in eleven tissues. In addition, we annotated various classes of non-coding RNA including microRNA, long intergenic RNA, small nucleolar RNA, natural antisense transcript, small nuclear RNA, and small RNA using published datasets and in-house analytic results. Altogether, we identified 635 novel protein-coding genes, 508 novel transcribed regions, 5178 non-coding RNAs, and 35 846 small RNA loci that were formerly unannotated. Analysis of the splicing events and RNA-Seq based expression profiles revealed the landscapes of gene structures, untranslated regions, and splicing activities to be more intricate than previously appreciated. Furthermore, we present 692 uniformly expressed housekeeping genes, 43% of whose human orthologs are also housekeeping genes. This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further our understanding of the biological processes of this plant model but also of other species.

Journal ArticleDOI
06 Oct 2017-eLife
TL;DR: It is shown that the m6A-binding protein YTHDC1 mediates export of methylated mRNA from the nucleus to the cytoplasm in HeLa cells, and supports an emerging paradigm of m 6A as a distinct biochemical entity for selective processing and metabolism of mammalian mRNAs.
Abstract: N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic messenger RNA (mRNA) and plays critical roles in RNA biology. The function of this modification is mediated by m6A-selective 'reader' proteins of the YTH family, which incorporate m6A-modified mRNAs into pathways of RNA metabolism. Here, we show that the m6A-binding protein YTHDC1 mediates export of methylated mRNA from the nucleus to the cytoplasm in HeLa cells. Knockdown of YTHDC1 results in an extended residence time for nuclear m6A-containing mRNA, with an accumulation of transcripts in the nucleus and accompanying depletion within the cytoplasm. YTHDC1 interacts with the splicing factor and nuclear export adaptor protein SRSF3, and facilitates RNA binding to both SRSF3 and NXF1. This role for YTHDC1 expands the potential utility of chemical modification of mRNA, and supports an emerging paradigm of m6A as a distinct biochemical entity for selective processing and metabolism of mammalian mRNAs.

Journal ArticleDOI
TL;DR: The growing field of ncRNA — including microRNA, intronic RNA, repetitive RNA and long non-coding RNA — is discussed and the potential and challenges in their therapeutic exploitation are assessed.
Abstract: Most of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) may affect normal gene expression and disease progression, making them a new class of targets for drug discovery. Because their mechanisms of action are often novel, developing drugs to target ncRNAs will involve equally novel challenges. However, many potential problems may already have been solved during the development of technologies to target mRNA. Here, we discuss the growing field of ncRNA - including microRNA, intronic RNA, repetitive RNA and long non-coding RNA - and assess the potential and challenges in their therapeutic exploitation.

Journal ArticleDOI
TL;DR: RNA-based therapeutics have great potential to target a large part of the currently undruggable genes and gene products and to generate entirely new therapeutic paradigms in disease, ranging from cancer to pandemic influenza to Alzheimer's disease.
Abstract: RNA-based therapeutics, such as small-interfering (siRNAs), microRNAs (miRNAs), antisense oligonucleotides (ASOs), aptamers, synthetic mRNAs and CRISPR-Cas9, have great potential to target a large part of the currently undruggable genes and gene products and to generate entirely new therapeutic paradigms in disease, ranging from cancer to pandemic influenza to Alzheimer's disease. However, for these RNA modalities to reach their full potential, they first need to overcome a billion years of evolutionary defenses that have kept RNAs on the outside of cells from invading the inside of cells. Overcoming the lipid bilayer to deliver RNA into cells has remained the major problem to solve for widespread development of RNA therapeutics, but recent chemistry advances have begun to penetrate this evolutionary armor.

Journal ArticleDOI
TL;DR: Using the RNA expression and protein sequencing assay (REAP-seq), the costimulatory effects of a CD27 agonist on human CD8+ lymphocytes and to identify and characterize an unknown cell type are assessed.
Abstract: We present a tool to measure gene and protein expression levels in single cells with DNA-labeled antibodies and droplet microfluidics. Using the RNA expression and protein sequencing assay (REAP-seq), we quantified proteins with 82 barcoded antibodies and >20,000 genes in a single workflow. We used REAP-seq to assess the costimulatory effects of a CD27 agonist on human CD8+ lymphocytes and to identify and characterize an unknown cell type.

Book ChapterDOI
TL;DR: The many discoveries that led to the study of lncRNAs are discussed, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s, to focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts.
Abstract: The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed “non-coding.” It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.

Journal ArticleDOI
31 May 2017-Nature
TL;DR: It is shown that repeat expansions create templates for multivalent base-pairing, which causes purified RNA to undergo a sol–gel transition in vitro at a similar critical repeat number as observed in the diseases.
Abstract: Expansions of short nucleotide repeats produce several neurological and neuromuscular disorders including Huntington disease, muscular dystrophy, and amyotrophic lateral sclerosis. A common pathological feature of these diseases is the accumulation of the repeat-containing transcripts into aberrant foci in the nucleus. RNA foci, as well as the disease symptoms, only manifest above a critical number of nucleotide repeats, but the molecular mechanism governing foci formation above this characteristic threshold remains unresolved. Here we show that repeat expansions create templates for multivalent base-pairing, which causes purified RNA to undergo a sol-gel transition in vitro at a similar critical repeat number as observed in the diseases. In human cells, RNA foci form by phase separation of the repeat-containing RNA and can be dissolved by agents that disrupt RNA gelation in vitro. Analogous to protein aggregation disorders, our results suggest that the sequence-specific gelation of RNAs could be a contributing factor to neurological disease.


Journal ArticleDOI
TL;DR: It is revealed that m5C modification is enriched in CG-rich regions and in regions immediately downstream of translation initiation sites and has conserved, tissue-specific and dynamic features across mammalian transcriptomes.
Abstract: 5-methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant tRNAs and rRNAs, and in mRNAs. However, its regulatory role in mRNA metabolism is still largely unknown. Here, we reveal that m5C modification is enriched in CG-rich regions and in regions immediately downstream of translation initiation sites and has conserved, tissue-specific and dynamic features across mammalian transcriptomes. Moreover, m5C formation in mRNAs is mainly catalyzed by the RNA methyltransferase NSUN2, and m5C is specifically recognized by the mRNA export adaptor ALYREF as shown by in vitro and in vivo studies. NSUN2 modulates ALYREF's nuclear-cytoplasmic shuttling, RNA-binding affinity and associated mRNA export. Dysregulation of ALYREF-mediated mRNA export upon NSUN2 depletion could be restored by reconstitution of wild-type but not methyltransferase-defective NSUN2. Our study provides comprehensive m5C profiles of mammalian transcriptomes and suggests an essential role for m5C modification in mRNA export and post-transcriptional regulation.

Journal ArticleDOI
TL;DR: This position paper was written by the participants of the workshop to give an overview of the current state of knowledge in the field and to clarify that incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research.
Abstract: The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge - of the nature of EV(-RNA)s and of how to effectively and reliably study them - currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.

Journal ArticleDOI
TL;DR: The results show that m6A-dependent RNA structural alterations can promote direct binding of m 6A-modified RNAs to low-complexity regions in RNA binding proteins.
Abstract: N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA), and affects almost every stage of the mRNA life cycle. The YTH-domain proteins can specifically recognize m6A modification to control mRNA maturation, translation and decay. m6A can also alter RNA structures to affect RNA-protein interactions in cells. Here, we show that m6A increases the accessibility of its surrounding RNA sequence to bind heterogeneous nuclear ribonucleoprotein G (HNRNPG). Furthermore, HNRNPG binds m6A-methylated RNAs through its C-terminal low-complexity region, which self-assembles into large particles in vitro. The Arg-Gly-Gly repeats within the low-complexity region are required for binding to the RNA motif exposed by m6A methylation. We identified 13,191 m6A sites in the transcriptome that regulate RNA-HNRNPG interaction and thereby alter the expression and alternative splicing pattern of target mRNAs. Low-complexity regions are pervasive among mRNA binding proteins. Our results show that m6A-dependent RNA structural alterations can promote direct binding of m6A-modified RNAs to low-complexity regions in RNA binding proteins.

Journal ArticleDOI
TL;DR: The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases.
Abstract: Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide-based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease.

Journal ArticleDOI
TL;DR: This Review focuses on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins, and addresses new areas of lncRNA biology.
Abstract: Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.

Journal ArticleDOI
TL;DR: It is found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ- Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts, and cell apoptosis was induced by upregulation of the Foxo 3 downstream target PUMA.
Abstract: Circular RNAs are a class of non-coding RNAs that are receiving extensive attention. Despite reports showing circular RNAs acting as microRNA sponges, the biological functions of circular RNAs remain largely unknown. We show that in patient tumor samples and in a panel of cancer cells, circ-Foxo3 was minimally expressed. Interestingly, during cancer cell apoptosis, the expression of circ-Foxo3 was found to be significantly increased. We found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ-Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts. Also, expression of circ-Foxo3 increased Foxo3 protein levels but repressed p53 levels. By binding to both, circ-Foxo3 promoted MDM2-induced p53 ubiquitination and subsequent degradation, resulting in an overall decrease of p53. With low binding affinity to Foxo3 protein, circ-Foxo3 prevented MDM2 from inducing Foxo3 ubiquitination and degradation, resulting in increased levels of Foxo3 protein. As a result, cell apoptosis was induced by upregulation of the Foxo3 downstream target PUMA.

Journal ArticleDOI
TL;DR: Recent progress in elucidating the molecular mechanisms by which lncRNAs modulate gene expression is reviewed, including the act of lnc RNA transcription rather than the lncRNA product that appears to be regulatory.
Abstract: It has recently become apparent that RNA, itself the product of transcription, is a major regulator of the transcriptional process. In particular, long noncoding RNAs (lncRNAs), which are so numerous in eukaryotes, function in many cases as transcriptional regulators. These RNAs function through binding to histone-modifying complexes, to DNA binding proteins (including transcription factors), and even to RNA polymerase II. In other cases, it is the act of lncRNA transcription rather than the lncRNA product that appears to be regulatory. We review recent progress in elucidating the molecular mechanisms by which lncRNAs modulate gene expression and future opportunities in this research field.

Journal ArticleDOI
TL;DR: The challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, are discussed, and an overview of the applications of RNAs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic are presented.
Abstract: The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.

Journal ArticleDOI
TL;DR: Recent research developments are summarized with the purpose of coming to a better understanding of non-coding RNAs and their mechanisms of action in cells, thus gaining a preliminary understanding that non- c coding RNAs feed back into an epigenetic regulatory network.
Abstract: Epigenetics is a discipline that studies heritable changes in gene expression that do not involve altering the DNA sequence. Over the past decade, researchers have shown that epigenetic regulation plays a momentous role in cell growth, differentiation, autoimmune diseases, and cancer. The main epigenetic mechanisms include the well-understood phenomenon of DNA methylation, histone modifications, and regulation by non-coding RNAs, a mode of regulation that has only been identified relatively recently and is an area of intensive ongoing investigation. It is generally known that the majority of human transcripts are not translated but a large number of them nonetheless serve vital functions. Non-coding RNAs are a cluster of RNAs that do not encode functional proteins and were originally considered to merely regulate gene expression at the post-transcriptional level. However, taken together, a wide variety of recent studies have suggested that miRNAs, piRNAs, endogenous siRNAs, and long non-coding RNAs are the most common regulatory RNAs, and, significantly, there is a growing body of evidence that regulatory non-coding RNAs play an important role in epigenetic control. Therefore, these non-coding RNAs (ncRNAs) highlight the prominent role of RNA in the regulation of gene expression. Herein, we summarize recent research developments with the purpose of coming to a better understanding of non-coding RNAs and their mechanisms of action in cells, thus gaining a preliminary understanding that non-coding RNAs feed back into an epigenetic regulatory network.

Journal ArticleDOI
11 Oct 2017-Nature
TL;DR: This work curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation.
Abstract: Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.