scispace - formally typeset
Search or ask a question

Showing papers on "RNA published in 2018"


Journal ArticleDOI
08 Aug 2018-Nature
TL;DR: It is shown that RNA velocity—the time derivative of the gene expression state—can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols, and expected to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.
Abstract: RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.

2,285 citations


Journal ArticleDOI
TL;DR: This work reports the insulin-like growth factor 2 mRNA-binding proteins as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence, and identifies IGF2BPs as an additional class of N6-methyladenosine (m 6A) reader proteins.
Abstract: N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here, we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTH domain-containing family protein 2, IGF2BPs promote the stability and storage of their target mRNAs (for example, MYC) in an m6A-dependent manner under normal and stress conditions and therefore affect gene expression output. Moreover, the K homology domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Thus, our work reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.

1,373 citations


Journal ArticleDOI
TL;DR: In the current database version of MODOMICS, the following new features and data are included: extended mass spectrometry and liquid chromatography data for modified nucleosides; links between human tRNA sequences and MINTbase - a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments.
Abstract: MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. In the current database version, we included the following new features and data: extended mass spectrometry and liquid chromatography data for modified nucleosides; links between human tRNA sequences and MINTbase - a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments; new, machine-friendly system of unified abbreviations for modified nucleoside names; sets of modified tRNA sequences for two bacterial species, updated collection of mammalian tRNA modifications, 19 newly identified modified ribonucleosides and 66 functionally characterized proteins involved in RNA modification. Data from MODOMICS have been linked to the RNAcentral database of RNA sequences. MODOMICS is available at http://modomics.genesilico.pl.

1,292 citations


Journal ArticleDOI
TL;DR: The RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA, are discussed.
Abstract: RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.

1,013 citations


Journal ArticleDOI
TL;DR: A comprehensive account of the state of the art of base editing of DNA and RNA is provided, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings.
Abstract: RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.

989 citations


Journal ArticleDOI
TL;DR: Long intergenic non-coding RNA genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity.
Abstract: Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.

829 citations


Journal ArticleDOI
TL;DR: The data indicate that CRISPR/Cas13a can be used for engineering interference againstRNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.
Abstract: CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single-stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants. CRISPR/Cas13a produces interference against green fluorescent protein (GFP)-expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. CRISPR RNA (crRNAs) targeting the HC-Pro and GFP sequences exhibit better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs. Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.

771 citations


Journal ArticleDOI
TL;DR: Endogenous circRNA encodes a functional protein in human cells, and circ-FBXW7 and FBXW 7-185aa have potential prognostic implications in brain cancer.
Abstract: Background Circular RNAs (circRNAs) are RNA transcripts that are widespread in the eukaryotic genome. Recent evidence indicates that circRNAs play important roles in tissue development, gene regulation, and carcinogenesis. However, whether circRNAs encode functional proteins remains elusive, although translation of several circRNAs was recently reported.

766 citations


Journal ArticleDOI
25 May 2018-Science
TL;DR: It is proposed that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble, and low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro.
Abstract: Prion-like RNA binding proteins (RBPs) such as TDP43 and FUS are largely soluble in the nucleus but form solid pathological aggregates when mislocalized to the cytoplasm. What keeps these proteins soluble in the nucleus and promotes aggregation in the cytoplasm is still unknown. We report here that RNA critically regulates the phase behavior of prion-like RBPs. Low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro. Reduction of nuclear RNA levels or genetic ablation of RNA binding causes excessive phase separation and the formation of cytotoxic solid-like assemblies in cells. We propose that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble. Changes in RNA levels or RNA binding abilities of RBPs cause aberrant phase transitions.

759 citations


Journal ArticleDOI
TL;DR: N nanopore direct RNA-seq is demonstrated, a highly parallel, real-time, single-molecule method that circumvents reverse transcription or amplification steps and enables the direct detection of nucleotide analogs in RNA.
Abstract: Direct sequencing of RNA molecules in real time using nanopores allows for the detection of splice variants and hold promises for profiling RNA modifications.

757 citations


Journal ArticleDOI
TL;DR: Recent integrative analyses have provided evidence that new computational platforms and experimental approaches can be harnessed together to distinguish key ceRNA interactions in specific cancers, which could facilitate the identification of robust biomarkers and therapeutic targets, and hence, more effective cancer therapies and better patient outcome and survival.
Abstract: Noncoding RNAs (ncRNAs) constitute the majority of the human transcribed genome. This largest class of RNA transcripts plays diverse roles in a multitude of cellular processes, and has been implicated in many pathological conditions, especially cancer. The different subclasses of ncRNAs include microRNAs, a class of short ncRNAs; and a variety of long ncRNAs (lncRNAs), such as lincRNAs, antisense RNAs, pseudogenes, and circular RNAs. Many studies have demonstrated the involvement of these ncRNAs in competitive regulatory interactions, known as competing endogenous RNA (ceRNA) networks, whereby lncRNAs can act as microRNA decoys to modulate gene expression. These interactions are often interconnected, thus aberrant expression of any network component could derail the complex regulatory circuitry, culminating in cancer development and progression. Recent integrative analyses have provided evidence that new computational platforms and experimental approaches can be harnessed together to distinguish key ceRNA interactions in specific cancers, which could facilitate the identification of robust biomarkers and therapeutic targets, and hence, more effective cancer therapies and better patient outcome and survival.

Journal ArticleDOI
19 Apr 2018-Cell
TL;DR: This work identifies an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that is classified as type VI-D, and presents CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.

Book ChapterDOI
TL;DR: Current knowledge of the miRNA-circRNA interaction and mechanisms that influence gene expression are summarized.
Abstract: Majority of RNAs expressed in animal cells lack protein-coding ability. Unlike other cellular RNAs, circular (circ)RNAs include a large family of noncoding (nc)RNAs that lack the 5′ or 3′ ends. The improvements in high-throughput RNA sequencing and novel bioinformatics tools have led to the identification of thousands of circRNAs in various organisms. CircRNAs can regulate gene expression by influencing the transcription, the mRNA turnover, and translation by sponging RNA-binding proteins and microRNAs. Given the broad impact of circRNA on miRNA activity, there is huge interest in understanding the impact of miRNA sponging by circRNA on gene regulation. In this review, we summarize our current knowledge of the miRNA-circRNA interaction and mechanisms that influence gene expression.

Journal ArticleDOI
28 Sep 2018-Science
TL;DR: Here, N6-methyladenosine affects the translation and stability of the modified transcripts, thus providing a mechanism to coordinate the regulation of groups of transcripts during cell state maintenance and transition and thereby facilitate proper development.
Abstract: RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programs. They affect diverse eukaryotic biological processes, and the correct deposition of many of these modifications is required for normal development. Messenger RNA (mRNA) modifications regulate various aspects of mRNA metabolism. For example, N6-methyladenosine (m6A) affects the translation and stability of the modified transcripts, thus providing a mechanism to coordinate the regulation of groups of transcripts during cell state maintenance and transition. Similarly, some modifications in transfer RNAs are essential for RNA structure and function. Others are deposited in response to external cues and adapt global protein synthesis and gene-specific translational accordingly and thereby facilitate proper development.

Journal ArticleDOI
TL;DR: SAVER (single-cell analysis via expression recovery), an expression recovery method for unique molecule index (UMI)-based scRNA-seq data that borrows information across genes and cells to provide accurate expression estimates for all genes.
Abstract: In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts present in each cell are sequenced. This leads to unreliable quantification of genes with low or moderate expression, which hinders downstream analysis. To address this challenge, we developed SAVER (single-cell analysis via expression recovery), an expression recovery method for unique molecule index (UMI)-based scRNA-seq data that borrows information across genes and cells to provide accurate expression estimates for all genes.

Journal ArticleDOI
TL;DR: It is demonstrated that Zc3h13 plays a critical role in anchoring WTAP, Virilizer, and Hakai in the nucleus to facilitate m6A methylation and to regulate mESC self-renewal.

Journal ArticleDOI
04 Apr 2018-Nature
TL;DR: Around 200 new vertebrates-specific viruses are discovered, and every vertebrate-specific viral family known to infect mammals and birds is also present in amphibians, reptiles or fish, suggesting that evolution of vertebrate viruses mirrors that of vertebrates hosts.
Abstract: Our understanding of the diversity and evolution of vertebrate RNA viruses is largely limited to those found in mammalian and avian hosts and associated with overt disease. Here, using a large-scale meta-transcriptomic approach, we discover 214 vertebrate-associated viruses in reptiles, amphibians, lungfish, ray-finned fish, cartilaginous fish and jawless fish. The newly discovered viruses appear in every family or genus of RNA virus associated with vertebrate infection, including those containing human pathogens such as influenza virus, the Arenaviridae and Filoviridae families, and have branching orders that broadly reflected the phylogenetic history of their hosts. We establish a long evolutionary history for most groups of vertebrate RNA virus, and support this by evaluating evolutionary timescales using dated orthologous endogenous virus elements. We also identify new vertebrate-specific RNA viruses and genome architectures, and re-evaluate the evolution of vector-borne RNA viruses. In summary, this study reveals diverse virus–host associations across the entire evolutionary history of the vertebrates. Around 200 new vertebrate-specific viruses are discovered, and every vertebrate-specific viral family known to infect mammals and birds is also present in amphibians, reptiles or fish, suggesting that evolution of vertebrate viruses mirrors that of vertebrate hosts.

Journal ArticleDOI
TL;DR: This Review discusses known 5′ UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.
Abstract: RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.

Journal ArticleDOI
Siobain Duffy1
TL;DR: The high mutation rate of RNA viruses is credited with their evolvability and virulence, but recent evidence that this is a byproduct of selection for faster genomic replication is discussed.
Abstract: The high mutation rate of RNA viruses is credited with their evolvability and virulence. This Primer, however, discusses recent evidence that this is, in part, a byproduct of selection for faster genomic replication.

Journal ArticleDOI
TL;DR: A 87-amino-acid peptide encoded by the circular form of the long intergenic non-protein-coding RNA p53-induced transcript (LINC-PINT) is identified that can reduce glioblastoma proliferation via interaction with PAF1 which sequentially inhibits the transcriptional elongation of some oncogenes.
Abstract: Circular RNAs (circRNAs) are a large class of transcripts in the mammalian genome. Although the translation of circRNAs was reported, additional coding circRNAs and the functions of their translated products remain elusive. Here, we demonstrate that an endogenous circRNA generated from a long noncoding RNA encodes regulatory peptides. Through ribosome nascent-chain complex-bound RNA sequencing (RNC-seq), we discover several peptides potentially encoded by circRNAs. We identify an 87-amino-acid peptide encoded by the circular form of the long intergenic non-protein-coding RNA p53-induced transcript (LINC-PINT) that suppresses glioblastoma cell proliferation in vitro and in vivo. This peptide directly interacts with polymerase associated factor complex (PAF1c) and inhibits the transcriptional elongation of multiple oncogenes. The expression of this peptide and its corresponding circRNA are decreased in glioblastoma compared with the levels in normal tissues. Our results establish the existence of peptides encoded by circRNAs and demonstrate their potential functions in glioblastoma tumorigenesis.

Journal ArticleDOI
TL;DR: This article aims to outline different cancer‐associated lncRNA according to their contribution to tumor suppression or tumor promotion based on their most current functional annotations.
Abstract: Since comprehensive analysis of the mammalian genome revealed that the majority of genomic products are transcribed in long non-coding RNA (lncRNA), increasing attention has been paid to these transcripts. The applied next-generation sequencing technologies have provided accumulating evidence of dysregulated lncRNA in cancer. The implication of this finding can be seen in many forms and at multiple levels. With impacts ranging from integrating chromatin remodeling complexes to regulating transcription and post-transcriptional processes, aberrant expression of lncRNA may have repercussions in cell proliferation, tumor progression or metastasis. lncRNA may act as enhancers, scaffolds or decoys by physically interacting with other RNA species or proteins, resulting in a direct impact on cell signaling cascades. Even though their functional classification is well-established in the context of cancer, clearer characterization in terms of their phenotypic outputs is needed to optimize and identify suitable candidates that enable the development of new therapeutic strategies and the design of novel diagnostic approaches. The present article aims to outline different cancer-associated lncRNA according to their contribution to tumor suppression or tumor promotion based on their most current functional annotations.

Journal ArticleDOI
TL;DR: It is demonstrated that the cellular distribution of FTO is distinct among different cell lines, affecting the access of Fto to different RNA substrates, and that FTO can directly repress translation by catalyzing m1A tRNA demethylation.

Journal ArticleDOI
TL;DR: The chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible and lessons learned from recent clinical trials will be summarized.
Abstract: RNA plays a central role in the expression of all genes. Because any sequence within RNA can be recognized by complementary base pairing, synthetic oligonucleotides and oligonucleotide mimics offer a general strategy for controlling processes that affect disease. The two primary antisense approaches for regulating expression through recognition of cellular RNAs are single-stranded antisense oligonucleotides and duplex RNAs. This review will discuss the chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible. Lessons learned from recent clinical trials will be summarized. Ongoing clinical trials are likely to decisively test the adequacy of our current generation of antisense nucleic acid technologies and highlight areas where more basic research is needed.

Journal ArticleDOI
TL;DR: In this article, the authors discuss principles for discovering small-molecule drugs that target RNA and argue that the overarching challenge is to identify appropriate target structures - namely, in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets.
Abstract: RNA molecules are essential for cellular information transfer and gene regulation, and RNAs have been implicated in many human diseases. Messenger and non-coding RNAs contain highly structured elements, and evidence suggests that many of these structures are important for function. Targeting these RNAs with small molecules offers opportunities to therapeutically modulate numerous cellular processes, including those linked to 'undruggable' protein targets. Despite this promise, there is currently only a single class of human-designed small molecules that target RNA used clinically - the linezolid antibiotics. However, a growing number of small-molecule RNA ligands are being identified, leading to burgeoning interest in the field. Here, we discuss principles for discovering small-molecule drugs that target RNA and argue that the overarching challenge is to identify appropriate target structures - namely, in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. If focus is placed on such druggable binding sites in RNA, extensive knowledge of the typical physicochemical properties of drug-like small molecules could then enable small-molecule drug discovery for RNA targets to become (only) roughly as difficult as for protein targets.

Journal ArticleDOI
TL;DR: The mechanisms by which YTH domain-containing proteins bind m6A and influence the fate of m6Methyladenosine-containing RNA in mammalian cells are described.

Journal ArticleDOI
25 May 2018-Science
TL;DR: The shape of RNA can promote the formation and coexistence of the diverse array of RNA-rich liquid compartments found in a single cell and support a model in which structure-based, RNA-RNA interactions promote assembly of distinct droplets and protein-driven, conformational dynamics of the RNA maintain this identity.
Abstract: RNA promotes liquid-liquid phase separation (LLPS) to build membraneless compartments in cells. How distinct molecular compositions are established and maintained in these liquid compartments is unknown. Here, we report that secondary structure allows messenger RNAs (mRNAs) to self-associate and determines whether an mRNA is recruited to or excluded from liquid compartments. The polyQ-protein Whi3 induces conformational changes in RNA structure and generates distinct molecular fluctuations depending on the RNA sequence. These data support a model in which structure-based, RNA-RNA interactions promote assembly of distinct droplets and protein-driven, conformational dynamics of the RNA maintain this identity. Thus, the shape of RNA can promote the formation and coexistence of the diverse array of RNA-rich liquid compartments found in a single cell.

Journal ArticleDOI
TL;DR: ExoRBase will aid researchers in identifying molecular signatures in blood exosomes and will trigger new exosomal biomarker discovery and functional implication for human diseases.
Abstract: Exosomes, which are nanosized endocytic vesicles that are secreted by most cells, contain an abundant cargo of different RNA species that can modulate the behavior of recipient cells and may be used as circulating biomarkers for diseases. Here, we develop a web-accessible database (http://www.exoRBase.org), exoRBase, which is a repository of circular RNA (circRNA), long non-coding RNA (lncRNA) and messenger RNA (mRNA) derived from RNA-seq data analyses of human blood exosomes. Experimental validations from the published literature are also included. exoRBase features the integration and visualization of RNA expression profiles based on normalized RNA-seq data spanning both normal individuals and patients with different diseases. exoRBase aims to collect and characterize all long RNA species in human blood exosomes. The first release of exoRBase contains 58 330 circRNAs, 15 501 lncRNAs and 18 333 mRNAs. The annotation, expression level and possible original tissues are provided. exoRBase will aid researchers in identifying molecular signatures in blood exosomes and will trigger new exosomal biomarker discovery and functional implication for human diseases.

Journal ArticleDOI
TL;DR: An orally available modulator of the SF3b complex, H3B-8800, is described, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells and demonstrates the therapeutic potential of splicing modulation in spliceOSome-Mutant cancers.
Abstract: Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor-encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.

Journal ArticleDOI
TL;DR: Evidence is provided that RNA–RNA interactions contribute to the assembly of stress granules, and that pathogenic dipeptides increase the propensity of RNA to assemble, arguing that RNAs are assembly prone and must be carefully regulated.
Abstract: Stress granules are higher order assemblies of nontranslating mRNAs and proteins that form when translation initiation is inhibited. Stress granules are thought to form by protein–protein interactions of RNA-binding proteins. We demonstrate RNA homopolymers or purified cellular RNA forms assemblies in vitro analogous to stress granules. Remarkably, under conditions representative of an intracellular stress response, the mRNAs enriched in assemblies from total yeast RNA largely recapitulate the stress granule transcriptome. We suggest stress granules are formed by a summation of protein–protein and RNA–RNA interactions, with RNA self-assembly likely to contribute to other RNP assemblies wherever there is a high local concentration of RNA. RNA assembly in vitro is also increased by GR and PR dipeptide repeats, which are known to increase stress granule formation in cells. Since GR and PR dipeptides are involved in neurodegenerative diseases, this suggests that perturbations increasing RNA–RNA assembly in cells could lead to disease.

Journal ArticleDOI
TL;DR: This work describes and validate a new strategy to generate large-scale amounts of RBC-derived EVs for the delivery of RNA drugs, including antisense oligonucleotides, Cas9 mRNA, and guide RNAs, shows highly robust microRNA inhibition and CRISPR–Cas9 genome editing in both human cells and xenograft mouse models.
Abstract: Most of the current methods for programmable RNA drug therapies are unsuitable for the clinic due to low uptake efficiency and high cytotoxicity. Extracellular vesicles (EVs) could solve these problems because they represent a natural mode of intercellular communication. However, current cellular sources for EV production are limited in availability and safety in terms of horizontal gene transfer. One potentially ideal source could be human red blood cells (RBCs). Group O-RBCs can be used as universal donors for large-scale EV production since they are readily available in blood banks and they are devoid of DNA. Here, we describe and validate a new strategy to generate large-scale amounts of RBC-derived EVs for the delivery of RNA drugs, including antisense oligonucleotides, Cas9 mRNA, and guide RNAs. RNA drug delivery with RBCEVs shows highly robust microRNA inhibition and CRISPR–Cas9 genome editing in both human cells and xenograft mouse models, with no observable cytotoxicity.