scispace - formally typeset
Search or ask a question
Topic

RNA

About: RNA is a research topic. Over the lifetime, 111695 publications have been published within this topic receiving 5475262 citations. The topic is also known as: ribonucleic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: The tridecamer acts as a primer for the avian myeloblastosis virus DNA polymerase when Rous sarcoma virus heated 70S RNA is used as a template, offering evidence that it can hybridize to the RNA.
Abstract: A tridecamer oligodeoxynucleotide, d(A-A-T-G-G-T-A-A-A-A-T-G-G), which is complementary to reiterated 3'- and 5'-terminal nucleotides of Rous sarcoma virus 35S RNA, is an efficient inhibitor of the translation of proteins specified by the viral RNA in the wheat embryo cell-free system. The inhibition specificity for oncornavirus RNA is greater than for rabbit reticulocyte mRNA or brome mosaic virus RNA. Other oligodeoxynucleotides of similar size have little or no specific effect on the RNA-directed translation. The tridecamer acts as a primer for the avian myeloblastosis virus DNA polymerase when Rous sarcoma virus heated 70S RNA is used as a template, offering evidence that it can hybridize to the RNA. The possible use of such an oligodeoxynucleotide hybridization competitor to inhibit Rous sarcoma virus replication is described in the preceding paper [Zamecnik, P. C. & Stephenson, M. L. (1978) Proc. Natl. Acad. Sci. USA. 75, 280--284].

777 citations

Journal ArticleDOI
01 Jun 1980-Cell
TL;DR: It is shown that both μ m and μ s mRNAs are produced from transcripts of a single μ gene, suggesting that developmental control of the site at which poly(A) is added to transcripts of the μ gene determines the relative levels of μ m or μ s chain synthesis.

777 citations

Patent
24 Jul 1996
TL;DR: The peptide nucleic acids (PNAs) as mentioned in this paper are a class of compounds that can bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility.
Abstract: A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting of naturally-occurring nucleobases and non-naturally-occurring nucleobases attached to a polyamide backbone, and contain alkylamine side chains.

777 citations

Journal ArticleDOI
TL;DR: Comparisons between the different classes of plant small RNAs help to illuminate key goals for future research.
Abstract: Regulatory small RNAs, which range in size from 20 to 24 nucleotides, are ubiquitous components of endogenous plant transcriptomes, as well as common responses to exogenous viral infections and introduced double-stranded RNA (dsRNA). Endogenous small RNAs derive from the processing of helical RNA precursors and can be categorized into several groups based on differences in biogenesis and function. A major distinction can be observed between small RNAs derived from singlestranded precursors with a hairpin structure [referred to here as hairpin RNAs (hpRNAs)] and those derived from dsRNA precursors [small interfering RNAs (siRNAs)]. hpRNAs in plants can be divided into two secondary groups: microRNAs and those that are not microRNAs. The currently known siRNAs fall mostly into one of three secondary groups: heterochromatic siRNAs, secondary siRNAs, and natural antisense transcript siRNAs. Tertiary subdivisions can be identified within many of the secondary classifications as well. Comparisons between the different classes of plant small RNAs help to illuminate key goals for future research.

774 citations

Journal ArticleDOI
TL;DR: Genetic studies have expanded the biology of RNAi to cosuppression, transposon silencing, and the first hints of relationships to regulation of translation and development, as well as expanding the possible roles of RNA-dependent RNA polymerase (RdRp) in RNAi.
Abstract: In the few years since the discovery of RNA interference (RNAi; Fire et al. 1998), it has become clear that this process is ancient. RNAi, the oldest and most ubiquitous antiviral system, appeared before the divergence of plants and animals. Because aspects of RNAi, known as cosuppression, also control the expression of transposable elements and repetitive sequences (Ketting et al. 1999; Tabara et al. 1999), the interplay of RNAi and transposon activities have almost certainly shaped the structure of the genome of most organisms. Surprisingly, we are only now beginning to explore the molecular processes responsible for RNAi and to appreciate the breadth of its function in biology. Practical applications of this knowledge have allowed rapid surveys of gene functions (see Fraser et al. 2000 and Gönczey et al. 2000 for RNAi analysis of genes on chromosome I and III of Caenorhabditis elegans) and will possibly result in new therapeutic interventions. Genetic studies have expanded the biology of RNAi to cosuppression, transposon silencing, and the first hints of relationships to regulation of translation and development. The possible roles of RNA-dependent RNA polymerase (RdRp) in RNAi have been expanded. Many experiments indicate that dsRNA directs gene-specific methylation of DNA and, thus, regulation at the stage of transcription in plants. Cosuppression may involve regulation by polycomb complexes at the level of transcription in C. elegans and Drosophila. This article will review these topics and primarily summarize advances in the study of RNAi over the past year.

774 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
94% related
DNA
107.1K papers, 4.7M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
Gene
211.7K papers, 10.3M citations
92% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,706
20227,117
20214,436
20204,465
20193,923