scispace - formally typeset
Search or ask a question
Topic

RNA

About: RNA is a research topic. Over the lifetime, 111695 publications have been published within this topic receiving 5475262 citations. The topic is also known as: ribonucleic acid.


Papers
More filters
Journal Article
01 Jan 2002-Nature
TL;DR: A conserved biological response to double-stranded RNA, known variously as RNA interference (RNAi) or post-transcriptional gene silencing, mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, and regulates the expression of protein-coding genes.
Abstract: A conserved biological response to double-stranded RNA, known variously as RNA interference (RNAi) or post-transcriptional gene silencing, mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, and regulates the expression of protein-coding genes. RNAi has been cultivated as a means to manipulate gene expression experimentally and to probe gene function on a whole-genome scale.

2,503 citations

Journal ArticleDOI
02 Sep 2005-Science
TL;DR: It is shown that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs, suggesting that miR -122 may present a target for antiviral intervention.
Abstract: MicroRNAs are small RNA molecules that regulate messenger RNA (mRNA) expression. MicroRNA 122 (miR-122) is specifically expressed and highly abundant in the human liver. We show that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs. A genetic interaction between miR-122 and the 5' noncoding region of the viral genome was revealed by mutational analyses of the predicted microRNA binding site and ectopic expression of miR-122 molecules containing compensatory mutations. Studies with replication-defective RNAs suggested that miR-122 did not detectably affect mRNA translation or RNA stability. Therefore, miR-122 is likely to facilitate replication of the viral RNA, suggesting that miR-122 may present a target for antiviral intervention.

2,484 citations

Journal ArticleDOI
TL;DR: The results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.
Abstract: The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughput approach, in order to estimate the integrity of RNA samples in an unambiguous way. A method is introduced that automatically selects features from signal measurements and constructs regression models based on a Bayesian learning technique. Feature spaces of different dimensionality are compared in the Bayesian framework, which allows selecting a final feature combination corresponding to models with high posterior probability. This approach is applied to a large collection of electrophoretic RNA measurements recorded with an Agilent 2100 bioanalyzer to extract an algorithm that describes RNA integrity. The resulting algorithm is a user-independent, automated and reliable procedure for standardization of RNA quality control that allows the calculation of an RNA integrity number (RIN). Our results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.

2,406 citations

Journal ArticleDOI
TL;DR: Application of an algorithm incorporating all eight characteristics associated with siRNA functionality significantly improves potent siRNA selection and highlights the utility of rational design for selecting potent siRNAs and facilitating functional gene knockdown studies.
Abstract: Short-interfering RNAs suppress gene expression through a highly regulated enzyme-mediated process called RNA interference (RNAi). RNAi involves multiple RNA-protein interactions characterized by four major steps: assembly of siRNA with the RNA-induced silencing complex (RISC), activation of the RISC, target recognition and target cleavage. These interactions may bias strand selection during siRNA-RISC assembly and activation, and contribute to the overall efficiency of RNAi. To identify siRNA-specific features likely to contribute to efficient processing at each step, we performed a systematic analysis of 180 siRNAs targeting the mRNA of two genes. Eight characteristics associated with siRNA functionality were identified: low G/C content, a bias towards low internal stability at the sense strand 3'-terminus, lack of inverted repeats, and sense strand base preferences (positions 3, 10, 13 and 19). Further analyses revealed that application of an algorithm incorporating all eight criteria significantly improves potent siRNA selection. This highlights the utility of rational design for selecting potent siRNAs and facilitating functional gene knockdown studies.

2,403 citations

Journal ArticleDOI
TL;DR: 17 Ohno, S., and B. M. deVenecia-Fernandez, Chromosoma, in press.
Abstract: 17 Ohno, S., and B. M. Cattanach, Cytogenet., 1, 129 (1962). 18 Russell, L. B., Science, 140, 976 (1963). 19 Lyon, M. F., Genetic Res., 4, 93 (1963). *' Benirschke, K., R. J. Low, L. E. Brownhill, L. B. Caday, and J. deVenecia-Fernandez, Chromosoma, in press. 21 Davidson, R. G., H. M. Nitowsky, and B. Childs, these PROCEEDINGS, 50, 481 (1963). 22Beutler, E., and M. Baluda, Lancet, I, 189 (1964). 23 Bach, F., and K. Hirschhorn, Proc. 11th Intern. Congr. Genet., p. 312 (1963). 24Sanger, R., R. R. Race, P. Tippett, J. Hamper, J. Gavin, and T. E. Cleghorn, Vox Sang., 7, 571 (1962) 2 Gorman, J. G., A. M. Treacy, and A. Cahan, J. Lab. Clin. Med., 61, 642 (1963). 26Reed, T. E., N. E. Simpson, and B. Chown, Lancet, H, 467 (1963). 27 Lindsten, J., M. Fraccaro, P. E. Polani, J. L. Hamerton, R. Sanger, and R. R. Race, Nature, 197, 648 (1963). '\" Muldal, S., L. Tiepolo, M. Fraccaro, and J. Lindsten, unpublished data.

2,378 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
94% related
DNA
107.1K papers, 4.7M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
Gene
211.7K papers, 10.3M citations
92% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,706
20227,117
20214,436
20204,465
20193,923