scispace - formally typeset
Search or ask a question
Topic

RNA

About: RNA is a research topic. Over the lifetime, 111695 publications have been published within this topic receiving 5475262 citations. The topic is also known as: ribonucleic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of the amino acid sequence reveals nine tandem similar units, each consisting of approximately 30 residues and containing two invariant pairs of cysteines and histidines, the most common ligands for zinc in the 7S particle of Xenopus laevis oocytes, which suggests that the protein contains repetitive zinc‐binding domains.
Abstract: The 7S particle of Xenopus laevis oocytes contains 5S RNA and a 40-K protein which is required for 5S RNA transcription in vitro. Proteolytic digestion of the protein in the particle yields periodic intermediates spaced at 3-K intervals and a limit digest containing 3-K fragments. The native particle is shown to contain 7-11 zinc atoms. These data suggest that the protein contains repetitive zinc-binding domains. Analysis of the amino acid sequence reveals nine tandem similar units, each consisting of approximately 30 residues and containing two invariant pairs of cysteines and histidines, the most common ligands for zinc. The linear arrangement of these repeated, independently folding domains, each centred on a zinc ion, comprises the major part of the protein. Such a structure explains how this small protein can bind to the long internal control region of the 5S RNA gene, and stay bound during the passage of an RNA polymerase molecule.

2,194 citations

Journal ArticleDOI
29 Jan 2015-Nature
TL;DR: Structural-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci is described and the potential of Cas9-based activators as a powerful genetic perturbation technology is demonstrated.
Abstract: Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.

2,186 citations

Journal ArticleDOI
09 Apr 1981-Nature
TL;DR: It is proposed that the H strand is transcribed into a single polycistronic RNA molecule, which is processed later into mature species by precise endonucleolytic cleavages which occur, in most cases, immediately before and after a tRNA sequence.
Abstract: A 3'-end proximal segment of most of the putative mRNAs encoded in the heavy strand of HeLa cell mtDNA has been partially sequences and aligned with the DNA sequence. In all cases, the 3'-end nucleotide of the individual mRNA coding sequences has been found to be immediately contiguous to a tRNA gene or another mRNA coding sequence. These and previous results indicate that the heavy (H) strand sequences coding for the rRNA, poly(A)-containing RNA and tRNA species form a continuum extending over almost the entire length of this strand. We propose that the H strand is transcribed into a single polycistronic RNA molecule, which is processed later into mature species by precise endonucleolytic cleavages which occur, in most cases, immediately before and after a tRNA sequence.

2,185 citations

Journal ArticleDOI
29 Jan 2013-eLife
TL;DR: It is shown here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks at a site complementary to the guide RNA sequence in genomic DNA.
Abstract: Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3' end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells.DOI:http://dx.doi.org/10.7554/eLife.00471.001.

2,143 citations

Journal ArticleDOI
10 Nov 2006-Science
TL;DR: It is shown that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5′-phosphates, and suggested that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
Abstract: Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.

2,133 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
94% related
DNA
107.1K papers, 4.7M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
Gene
211.7K papers, 10.3M citations
92% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,706
20227,117
20214,436
20204,465
20193,923