scispace - formally typeset
Search or ask a question
Topic

RNA

About: RNA is a research topic. Over the lifetime, 111695 publications have been published within this topic receiving 5475262 citations. The topic is also known as: ribonucleic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings indicate that the MEN epsilon/beta non-coding RNAs are essential structural/organizational components of paraspeckles.
Abstract: Studies of the transcriptional output of the human and mouse genomes have revealed that there are many more transcripts produced than can be accounted for by predicted protein-coding genes. Using a custom microarray, we have identified 184 non-coding RNAs that exhibit more than twofold up- or down-regulation upon differentiation of C2C12 myoblasts into myotubes. Here, we focus on the Men epsilon/beta locus, which is up-regulated 3.3-fold during differentiation. Two non-coding RNA isoforms are produced from a single RNA polymerase II promoter, differing in the location of their 3' ends. Men epsilon is a 3.2-kb polyadenylated RNA, whereas Men beta is an approximately 20-kb transcript containing a genomically encoded poly(A)-rich tract at its 3'-end. The 3'-end of Men beta is generated by RNase P cleavage. The Men epsilon/beta transcripts are localized to nuclear paraspeckles and directly interact with NONO. Knockdown of MEN epsilon/beta expression results in the disruption of nuclear paraspeckles. Furthermore, the formation of paraspeckles, after release from transcriptional inhibition by DRB treatment, was suppressed in MEN epsilon/beta-depleted cells. Our findings indicate that the MEN epsilon/beta non-coding RNAs are essential structural/organizational components of paraspeckles.

593 citations

Journal ArticleDOI
28 Jun 2002-Cell
TL;DR: This work shows that the C. elegans RNAi pathway gene, rde-4, encodes a dsRNA binding protein that interacts during RNAi with RNA identical to the trigger dsRNAs, and suggests a model in which RDE-4 and Rde-1 function together to detect and retain foreign ds RNA and to present this ds RNAs to DCR-1 for processing.

593 citations

Journal ArticleDOI
28 May 2010-Cell
TL;DR: It is shown how RNA viruses can manipulate multiple components of the cellular secretory pathway to generate organelles specialized for replication that are distinct in protein and lipid composition from the host cell.

593 citations

Journal ArticleDOI
TL;DR: RNP immunoprecipitation–microarray (RIP-Chip) allows the identification of discrete subsets of RNAs associated with multi-targeted RNA-binding proteins and provides information regarding changes in the intracellular composition of mRNPs in response to physical, chemical or developmental inducements of living systems.
Abstract: RNA targets of multitargeted RNA-binding proteins (RBPs) can be studied by various methods including mobility shift assays, iterative in vitro selection techniques and computational approaches. These techniques, however, cannot be used to identify the cellular context within which mRNAs associate, nor can they be used to elucidate the dynamic composition of RNAs in ribonucleoprotein (RNP) complexes in response to physiological stimuli. But by combining biochemical and genomics procedures to isolate and identify RNAs associated with RNA-binding proteins, information regarding RNA–protein and RNA–RNA interactions can be examined more directly within a cellular context. Several protocols — including the yeast three-hybrid system and immunoprecipitations that use physical or chemical cross-linking — have been developed to address this issue. Cross-linking procedures in general, however, are limited by inefficiency and sequence biases. The approach outlined here, termed RNP immunoprecipitation–microarray (RIP-Chip), allows the identification of discrete subsets of RNAs associated with multi-targeted RNA-binding proteins and provides information regarding changes in the intracellular composition of mRNPs in response to physical, chemical or developmental inducements of living systems. Thus, RIP-Chip can be used to identify subsets of RNAs that have related functions and are potentially co-regulated, as well as proteins that are associated with them in RNP complexes. Using RIP-Chip, the identification and/or quantification of RNAs in RNP complexes can be accomplished within a few hours or days depending on the RNA detection method used. *Note: In the version of the article originally published, in the last sentence of the ANTICIPATED RESULTS section, the callout should be to reference 19 instead of 18. The error has been corrected in the HTML and PDF versions of the article.

592 citations

Journal ArticleDOI
01 Mar 2007-RNA
TL;DR: It is suggested that H19 expression results in the post-transcriptional downregulation of specific mRNAs during vertebrate development and can function as a primary microRNA precursor.
Abstract: Although H19 was the first imprinted noncoding transcript to be identified, the function of this conserved RNA has remained unclear. Here, we identify a 23-nucleotide microRNA derived from H19 that is endogenously expressed in human keratinocytes and neonatal mice and overexpressed in cells transfected with human or mouse H19 expression plasmids. These data demonstrate that H19 can function as a primary microRNA precursor and suggest that H19 expression results in the post-transcriptional downregulation of specific mRNAs during vertebrate development.

592 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
94% related
DNA
107.1K papers, 4.7M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
Gene
211.7K papers, 10.3M citations
92% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,706
20227,117
20214,436
20204,465
20193,923