scispace - formally typeset
Search or ask a question
Topic

RNA

About: RNA is a research topic. Over the lifetime, 111695 publications have been published within this topic receiving 5475262 citations. The topic is also known as: ribonucleic acid.


Papers
More filters
Journal ArticleDOI
10 Aug 2007-Cell
TL;DR: The proteins required for viRNA production as well as several key downstream components of the antiviral immunity pathway have been identified in plants, flies, and worms, illuminating an ongoing molecular arms race that likely impacts the evolution of both viral and host genomes.

1,431 citations

Journal ArticleDOI
01 Jan 1987-Gene
TL;DR: Plasmid vectors are described that allow cloning of target DNAs at sites where they will be minimally transcribed by Escherichia coli RNA polymerase but selectively and actively transcribing by T7 RNA polymerases, in vitro or in E. coli cells.

1,429 citations

Journal ArticleDOI
TL;DR: Synthetic siRNAs can induce gene-specific inhibition of expression in Caenorhabditis elegans and in cell lines from humans and mice, and seem to avoid the well documented nonspecific effects triggered by longer double-stranded RNAs in mammalian cells.
Abstract: Short interfering RNAs (siRNAs) are double-stranded RNAs of ’21‐25 nucleotides that have been shown to function as key intermediaries in triggering sequence-specific RNA degradation during posttranscriptional gene silencing in plants and RNA interference in invertebrates siRNAs have a characteristic structure, with 5*-phosphatey3*-hydroxyl ends and a 2-base 3* overhang on each strand of the duplex In this study, we present data that synthetic siRNAs can induce gene-specific inhibition of expression in Caenorhabditis elegans and in cell lines from humans and mice In each case, the interference by siRNAs was superior to the inhibition of gene expression mediated by single-stranded antisense oligonucleotides The siRNAs seem to avoid the well documented nonspecific effects triggered by longer double-stranded RNAs in mammalian cells These observations may open a path toward the use of siRNAs as a reverse genetic and therapeutic tool in mammalian cells

1,420 citations

Journal ArticleDOI
04 May 2006-Nature
TL;DR: It is shown that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.
Abstract: The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg(-1). A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.

1,417 citations

Journal ArticleDOI
TL;DR: Comparison of Hae III and Hpa II digestion of cereal rDNAs and the cloned repeats suggests that most methylated cytosines in natural rDNA are in -CpG-.
Abstract: Wheat and barley DNA enriched for ribosomal RNA genes was isolated from actinomycin D-CsCl gradients and used to clone the ribosomal repeating units in the plasmid pAC184. All five chimeric plasmids isolated which contained wheat rDNA and eleven of the thirteen which had barley rDNA were stable and included full length ribosomal repeating units. Physical maps of all length variants cloned have been constructed using the restriction endonucleases Eco Rl, Bam Hl, Bgl II, Hind III and Sal I. Length variation in the repeat units was attributed to differences in the spacer regions. Comparison of Hae III and Hpa II digestion of cereal rDNAs and the cloned repeats suggests that most methylated cytosines in natural rDNA are in -CpG-. Incomplete methylation occurs at specific Bam Hl sites in barley DNA. Detectable quantities of ribosomal spacer sequences are not present at any genomic locations other than those of the ribosomal RNA gene repeats.

1,413 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
94% related
DNA
107.1K papers, 4.7M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
Gene
211.7K papers, 10.3M citations
92% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,706
20227,117
20214,436
20204,465
20193,923