scispace - formally typeset
Search or ask a question

Showing papers on "RNA-dependent RNA polymerase published in 1995"


Journal ArticleDOI
TL;DR: Infectious vesicular stomatitis virus (VSV), the prototypic nonsegmented negative-strand RNA virus, was recovered from a full-length cDNA clone of the viral genome, rendering the biology of VSV fully accessible to genetic manipulation of theiral genome.
Abstract: Infectious vesicular stomatitis virus (VSV), the prototypic nonsegmented negative-strand RNA virus, was recovered from a full-length cDNA clone of the viral genome. Bacteriophage T7 RNA polymerase expressed from a recombinant vaccinia virus was used to drive the synthesis of a genome-length positive-sense transcript of VSV from a cDNA clone in baby hamster kidney cells that were simultaneously expressing the VSV nucleocapsid protein, phosphoprotein, and polymerase from separate plasmids. Up to 10(5) infectious virus particles were obtained from transfection of 10(6) cells, as determined by plaque assays. This virus was amplified on passage, neutralized by VSV-specific antiserum, and shown to possess specific nucleotide sequence markers characteristic of the cDNA. This achievement renders the biology of VSV fully accessible to genetic manipulation of the viral genome. In contrast to the success with positive-sense RNA, attempts to recover infectious virus from negative-sense T7 transcripts were uniformly unsuccessful, because T7 RNA polymerase terminated transcription at or near the VSV intergenic junctions.

536 citations


Journal ArticleDOI
01 Sep 1995-Science
TL;DR: The shorter template regions of the mouse and other rodent telomerase RNAs could account for the shorter distribution of products (processivity) generated by the mouse enzyme relative to the human telomersase.
Abstract: Telomerase synthesizes telomeric DNA repeats onto chromosome ends de novo. The mouse telomerase RNA component was cloned and contained only 65 percent sequence identity with the human telomerase RNA. Alteration of the template region in vivo generated altered telomerase products. The shorter template regions of the mouse and other rodent telomerase RNAs could account for the shorter distribution of products (processivity) generated by the mouse enzyme relative to the human telomerase. Amounts of telomerase RNA increased in immortal cells derived from primary mouse fibroblasts. RNA was detected in all newborn mouse tissues tested but was decreased during postnatal development.

377 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the NS3 and NS5 proteins interact in vivo in dengue virus type 2-infected monkey kidney (CV-1) cells and in HeLa cells coinfected with recombinant vaccinia viruses encoding these proteins as shown by coimmunoprecipitations and immunoblotting methods.

300 citations


Journal ArticleDOI
TL;DR: A T7 RNA polymerase (RNAP) mutant that efficiently utilizes deoxyribonucleoside triphosphates is identified, which can use RNA templates as well as DNA templates and is capable of both primer extension and de novo initiation.
Abstract: We have identified a T7 RNA polymerase (RNAP) mutant that efficiently utilizes deoxyribonucleoside triphosphates. In vitro this mutant will synthesize RNA, DNA or 'transcripts' of mixed dNMP/rNMP composition depending on the mix of NTPs present in the synthesis reaction. The mutation is conservative, changes Tyr639 within the active site to phenylalanine and does not affect promoter specificity or overall activity. Non-conservative mutations of this tyrosine also reduce discrimination between deoxyribo- and ribonucleoside triphosphates, but these mutations also cause large activity reductions. Of 26 mutations of other residues in and around the active site examined none showed marked effects on rNTP/dNTP discrimination. Mutations of the corresponding tyrosine in DNA polymerase (DNAP) I increase miscoding, though effects on dNTP/rNTP discrimination for the DNAP I mutations have not been reported. This conserved tyrosine may therefore play a similar role in many polymerases by sensing incorrect geometry in the structure of the substrate/template/product due to inappropriate substrate structure or mismatches. T7 RNAP can use RNA templates as well as DNA templates and is capable of both primer extension and de novo initiation. The Y639F mutant retains the ability to use RNA or DNA templates. Thus this mutant can display de novo initiated or primed DNA-directed DNA polymerase, reverse transcriptase, RNA-directed RNA polymerase or DNA-directed RNA polymerase activities depending simply on the templates and substrates presented to it in the synthesis reaction.

298 citations


Journal ArticleDOI
TL;DR: This experiment is presented as a first approach to a synthetic minimal cell, in which the reproduction of the membrane and the replication of the internalized RNA molecules proceed simultaneously.

284 citations


Journal ArticleDOI
TL;DR: This work investigates the fraction of genes that require SRB proteins in vivo by examining the effect of temperature-sensitive mutations in SRB genes on transcription by RNA polymerase II, and argues that SRB-containing holoenzymes are the form of RNA polymerases II recruited to most promoters in the cell.
Abstract: Yeast RNA polymerase II holoenzymes have been described that consist of RNA polymerase II, a subset of general transcription factors, and nine SRB regulatory proteins. The feature that distinguishes the RNA polymerase II holoenzymes from other forms of RNA polymerase II in the cell is their tight association with SRB proteins. We investigated the fraction of genes that require SRB proteins in vivo by examining the effect of temperature-sensitive mutations in SRB genes on transcription by RNA polymerase II. Upon transfer to the restrictive temperature, there is a rapid and general shutdown of mRNA synthesis in srb mutant cells. These data, combined with the observation that essentially all of the SRB protein in cells is tightly associated with RNA polymerase II molecules, argue that SRB-containing holoenzymes are the form of RNA polymerase II recruited to most promoters in the cell.

244 citations



Journal ArticleDOI
TL;DR: Sequence comparison reveals that the main characteristics of the binary complex model are conserved among all HIV-1 isolates.

235 citations


Journal ArticleDOI
24 Feb 1995-Science
TL;DR: An in vitro system reconstituted from purified proteins has been used to examine what happens when the DNA replication apparatus of bacteriophage T4 collides with an Escherichia coli RNA polymerase ternary transcription complex, finding that there is an inherent disadvantage to having replication and transcription directions oriented head to head.
Abstract: An in vitro system reconstituted from purified proteins has been used to examine what happens when the DNA replication apparatus of bacteriophage T4 collides with an Escherichia coli RNA polymerase ternary transcription complex that is poised to move in the direction opposite to that of the moving replication fork. In the absence of a DNA helicase, the replication fork stalls for many minutes after its encounter with the RNA polymerase. However, when the T4 gene 41 DNA helicase is present, the replication fork passes the RNA polymerase after a pause of a few seconds. This brief pause is longer than the pause observed for a codirectional collision between the same two polymerases, suggesting that there is an inherent disadvantage to having replication and transcription directions oriented head to head. As for a codirectional collision, the RNA polymerase remains competent to resume faithful RNA chain elongation after the DNA replication fork passes; most strikingly, the RNA polymerase has switched from its original template strand to use the newly synthesized daughter DNA strand as the template.

222 citations


Journal ArticleDOI
TL;DR: It is proposed that this higher speed T7 RNA polymerase transcribes the lacZ gene approximately 8‐fold faster than the E. coli enzyme unmasks an RNase E cleavage site which is normally shielded by ribosomes soon after its synthesis when the slower E. bacteria enzyme is used.
Abstract: We have used either Escherichia coli or T7 RNA polymerase to transcribe in E coli a series of lacZ genes that differ in the nature of their ribosome binding sites (RBS) Each T7 RNA polymerase transcript yields from 15- to 450-fold less beta-galactosidase than its E coli polymerase counterpart, the ratio being larger when weaker RBS are used The low beta-galactosidase yield from T7 transcripts reflects their low stability: the ams-1/rne-50 mutation, which inactivates RNase E, nearly equalizes the beta-galactosidase yields from T7 and E coli RNA polymerase transcripts T7 RNA polymerase transcribes the lacZ gene approximately 8-fold faster than the E coli enzyme We propose that this higher speed unmasks an RNase E cleavage site which is normally shielded by ribosomes soon after its synthesis when the slower E coli enzyme is used This leads to degradation of the T7 transcript, unless the leading ribosome comes in time to shield the cleavage site: the weaker the RBS, the lower this probability and the more severe the inability of T7 RNA polymerase transcripts for beta-galactosidase synthesis

215 citations


Journal ArticleDOI
TL;DR: Two adjacent papainlike cysteine protease domains, PCP alpha and PCP beta, were identified in the N-terminal region of the open reading frame 1a replicase proteins of the arteriviruses porcine reproductive and respiratory syndrome virus and lactate dehydrogenase-elevating virus.
Abstract: Two adjacent papainlike cysteine protease (PCP) domains, PCP alpha and PCP beta, were identified in the N-terminal region of the open reading frame 1a replicase proteins of the arteriviruses porcine reproductive and respiratory syndrome virus and lactate dehydrogenase-elevating virus. The replicase of the related virus equine arteritis virus contains only one active PCP in the corresponding region. Sequence comparison revealed that the equine arteritis virus PCP alpha counterpart probably was inactivated by loss of its catalytic Cys residue. For both porcine reproductive and respiratory syndrome virus and lactate dehydrogenase-elevating virus, the generation of two processing products, nsp1 alpha and nsp1 beta, was demonstrated by in vitro translation. Site-directed mutagenesis and sequence comparison were used to identify the putative active-site residues of the PCP alpha and PCP beta protease domains and to show that they mediate the nsp1 alpha/1 beta and nsp1 beta/2 cleavages, respectively.

Journal ArticleDOI
09 Mar 1995-Nature
TL;DR: The discovery that adenylation-mediated degradation by polynucleotide phosphorylase imparts an mRN A-Iike half-life to RNA I suggests a possible mechanism to account for the rapid decay of mRNA10 in E. coli.
Abstract: Although polyadenylation has commonly been regarded as a special feature of eukaryotic messenger RNA, there are many reports of polyA tails on bacterial RNA (for example, refs 3-8). In Escherichia coli, adenylation mediated by the pcnB gene greatly accelerates decay of RNA I, an antisense repressor of replication of ColE1 type plasmids that resembles highly structured transfer RNA but shows the rapid turnover characteristic of mRNA. Here we report that both 3' adenylation and 5' phosphorylation affect the rate of digestion of RNA I by the 3' exonuclease, polynucleotide phosphorylase; conversely, mutation of the polynucleotide phosphorylase-encoding pnp gene affects ribonuclease acting at the 5' end. Together these findings indicate that enzymes attacking RNA I at its separate termini can interact functionally. Additionally, our discovery that adenylation-mediated degradation by polynucleotide phosphorylase imparts an mRNA-like half-like to RNA I suggests a possible mechanism to account for the rapid decay of mRNA in E. coli.

Journal ArticleDOI
TL;DR: Two methods for the large scale production of homogeneous RNA of virtually any sequence for crystallization are developed and the BsmAI restriction endonuclease is used to linearize plasmid template DNA thereby allowing the generation of RNA with any 3' end.

Journal ArticleDOI
TL;DR: It is shown that RNA polymerase II transcription is drastically reduced in a kin28-ts mutant, at restrictive temperature, and this impairment correlates with a markedly decreased phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNA polymerases II (Rpb1p).

Journal ArticleDOI
TL;DR: It is shown that the antigenomic RNA of HDV is in fact the target for RNA editing, which is therefore a conversion of A to G, and the likelihood that double-stranded RNA adenosine deaminase specifically edits HDV antigenomicRNA is raised.
Abstract: RNA editing plays a central role in the life cycle of hepatitis D virus (HDV), a subviral human pathogen. Previous studies (J.L. Casey, K.F. Bergmann, T.L. Brown, and J.L. Gerin, Proc. Natl. Acad. Sci USA 89:7149-7153, 1992; H. Zheng, T.-B. Fu, D. Lazinski, and J. Taylor, J. Virol. 66:4693-4697, 1992) had concluded that the genomic RNA of HDV was the target for RNA editing and that the editing reaction was a conversion of U to C. However, we show here that the antigenomic RNA of HDV is in fact the target for HDV RNA editing, which is therefore a conversion of A to G. This result is verified by using an assay specific for editing on the antigenomic RNA and by analyzing the editing of site-directed mutant RNAs in transfected cells and in cell extracts. Because editing occurs in the absence of viral antigens and the specificity for the HDV editing target site is present even in extracts from Drosophila cells, it is likely that HDV RNA is edited by one or more cellular factors that are conserved among higher eukaryotes. These results raise the likelihood that double-stranded RNA adenosine deaminase specifically edits HDV antigenomic RNA.

Journal ArticleDOI
TL;DR: It is shown that a purified recombinant BVDV NS3 protein derived from baculovirus-infected insect cells possesses RNA helicase activity, which was dependent on the presence of nucleoside triphosphate and divalent cation and had a preference for ATP and Mn2+.
Abstract: The pestivirus bovine viral diarrhea virus (BVDV) p80 protein (referred to here as the NS3 protein) contains amino acid sequence motifs predictive of three enzymatic activities: serine proteinase, nucleoside triphosphatase, and RNA helicase. We have previously demonstrated that the former two enzymatic activities are associated with this protein. Here, we show that a purified recombinant BVDV NS3 protein derived from baculovirus-infected insect cells possesses RNA helicase activity. BVDV NS3 RNA helicase activity was specifically inhibited by monoclonal antibodies to the p80 protein. The activity was dependent on the presence of nucleoside triphosphate and divalent cation, with a preference for ATP and Mn2+. Hydrolysis of the nucleoside triphosphate was necessary for strand displacement. The helicase activity required substrates with an un-base-paired region on the template strand 3' of the duplex region. As few as three un-base-paired nucleotides were sufficient for efficient oligonucleotide displacement. However, the enzyme did not act on substrates having a single-stranded region only to the 5' end of the duplex or on substrates lacking single-stranded regions altogether (blunt-ended duplex substrates), suggesting that the directionality of the BVDV RNA helicase was 3' to 5' with respect to the template strand. The BVDV helicase activity was able to displace both RNA and DNA oligonucleotides from RNA template strands but was unable to release oligonucleotides from DNA templates. The possible role of this activity in pestivirus replication is discussed.

Journal ArticleDOI
TL;DR: A system for expression and recovery of replicable RS virus RNA entirely from cDNA clones is developed that has the advantages that expression occurs at a level sufficient to allow direct biochemical analysis of the products of RNA replication and that neither the use of reporter genes nor wild-type RS helper virus is required.
Abstract: The RNA-dependent RNA polymerase of human respiratory syncytial (RS) virus was expressed in a functional form from a cDNA clone. Coexpression of the viral polymerase (L) protein, phosphoprotein (P), and nucleocapsid (N) protein allowed us to develop a system for expression and recovery of replicable RS virus RNA entirely from cDNA clones. cDNA clones of the N, P, and L genes were constructed in pGEM-based expression plasmids and shown to direct expression of the appropriate polypeptides. Two types of RS virus genomic RNA analogs were expressed from an intracellular transcription plasmid that directed the synthesis of RNAs with defined 5' and 3' ends. One analog included the authentic 5' and 3' termini of the genome, and the second contained the authentic 5' terminus and its complement at the 3' terminus as found in copyback defective interfering RNAs of other negative-strand RNA viruses. Both types of genomic analogs were encapsidated and replicated in cells expressing the RS virus N, P, and L proteins. Omission of any of the three viral proteins abrogated replication, thereby defining the N, P, and L proteins as the minimal trans-acting proteins required for RNA replication. This system has the advantages that expression occurs at a level sufficient to allow direct biochemical analysis of the products of RNA replication and that neither the use of reporter genes nor wild-type RS helper virus is required. These features allow analysis of both cis- and trans-acting factors involved in the control of replication of RS virus RNA.

Journal ArticleDOI
TL;DR: Se sequencing of the high molecular weight transcripts demonstrates that their 5′- ends are precisely defined in sequence, whereas the 3′-ends contain size-variable extensions which show complementarity to the correct transcript.

Journal ArticleDOI
10 Jul 1995-Virology
TL;DR: A system of introducing site-specific genetic changes into the genome of feline calicivirus and the recovery of infectious mutant viruses will enable studies related to the molecular basis for replication, growth restriction, and pathogenicity of this and other members of the Caliciviridae.

Journal ArticleDOI
TL;DR: The synthesis of ribonucleic acid strands by RNA polymerase enzymes has long been known to initiate specifically at well-defined promoter sequences, and this fact has been used in the “runoff transcription” method for laboratory synthesis of sequence-defined oligoribonucleotides.
Abstract: The synthesis of ribonucleic acid strands by RNA polymerase enzymes has long been known to initiate specifically at well-defined promoter sequences.1 For example, the T7 RNA polymerase enzyme initiates RNA strand synthesis with a pppG residue immediately downstream from a conserved ~17-base-pair duplex DNA sequence.2 This fact has been used in the “runoff transcription” method for laboratory synthesis of sequence-defined oligoribonucleotides, in which DNA strands which contain the double-stranded promoter at one end serve as templates for RNA synthesis.3

Journal Article
01 Jun 1995-RNA
TL;DR: Comparison analysis gives the structure of the RNA in vivo, as expected, and the in vivo methylation pattern corresponded much better to the structure determined by comparative sequence analysis than did the in vitro methylation patterns.
Abstract: Dimethyl sulfate modification of RNA in living Tetrahymena thermophila allowed assessment of RNA secondary structure and protein association. The self-splicing rRNA intron had the same methylation pattern in vivo as in vitro, indicating that the structures are equivalent and suggesting that this RNA is not stably associated with protein in the nucleolus. Methylation was consistent with the current secondary structure model. Much of telomerase RNA was protected from methylation in vivo, but the A's and C's in the template region were very reactive. Thus, most telomerase is not base paired to telomeres in vivo. Protein-free telomerase RNA adopts a structure different from that in vivo, especially in the template and pseudoknot regions. The U2 snRNA showed methylation protection at the Sm protein-binding sequence and the mRNA branch site recognition sequence. For both telomerase RNA and U2 snRNA, the in vivo methylation pattern corresponded much better to the structure determined by comparative sequence analysis than did the in vitro methylation pattern. Thus, as expected, comparative analysis gives the structure of the RNA in vivo.

Journal ArticleDOI
TL;DR: In this paper, a review focuses on recent studies which show that N can mediate antitermination in vitro, independent of Nus proteins, where only an RNA signal appears necessary and sufficient to create a termination-resistant RNA polymerase.
Abstract: Coliphage lambda employs systems of transcription termination and antitermination to regulate gene expression. Early gene expression is regulated by the phage-encoded N protein working with a series of Escherichia coli proteins, Nus, at RNA sites, NUT, to modify RNA polymerase to a termination-resistant form. Expression of lambda late genes is regulated by the phage-encoded Q antitermination protein. Q, which appears to use only one host factor, acts at a DNA site, qut, to modify RNA polymerase to a termination-resistant form. This review focuses on recent studies which show that: (i) N can mediate antitermination in vitro, independent of Nus proteins. (ii) Early genes in another lambdoid phage HK022 are also regulated by antitermination, where only an RNA signal appears necessary and sufficient to create a termination-resistant RNA polymerase. (iii) A part of the qut signal appears to be read from the non-template DNA strand. (iv) A host-encoded inhibitor of N antitermination appears to act through the NUT site as well as with the alpha subunit of RNA polymerase, and is antagonized by NusB protein.

Journal ArticleDOI
TL;DR: The HeLa S10 translation-RNA replication reactions represent an efficient in vitro system for authentic poliovirus replication, including protein synthesis, polyprotein processing, RNA replication, and virus assembly.
Abstract: Translation of poliovirion RNA in HeLa S10 extracts resulted in the formation of RNA replication complexes which catalyzed the asymmetric replication of poliovirus RNA. Synthesis of poliovirus RNA was detected in unfractionated HeLa S10 translation reactions and in RNA replication complexes isolated from HeLa S10 translation reactions by pulse-labeling with [32P]CTP. The RNA replication complexes formed in vitro contained replicative-intermediate RNA and were enriched in viral protein 3CD and the membrane-associated viral proteins 2C, 2BC, and 3AB. Genome-length poliovirus RNA covalently linked to VPg was synthesized in large amounts by the replication complexes. RNA replication was highly asymmetric, with predominantly positive-polarity RNA products. Both anti-VPg antibody and guanidine HCl inhibited RNA replication and virus formation in the HeLa S10 translation reactions without affecting viral protein synthesis. The inhibition of RNA synthesis by guanidine was reversible. The reversible nature of guanidine inhibition was used to demonstrate the formation of preinitiation RNA replication complexes in reaction mixes containing 2 mM guanidine HCl. Preinitiation complexes sedimented upon centrifugation at 15,000 x g and initiated RNA replication upon their resuspension in reaction mixes lacking guanidine. Initiation of RNA synthesis by preinitiation complexes did not require active protein synthesis or the addition of soluble viral proteins. Initiation of RNA synthesis by preinitiation complexes, however, was absolutely dependent on soluble HeLa cytoplasmic factors. Preinitiation complexes also catalyzed the formation of infectious virus in reaction mixes containing exogenously added capsid proteins. The titer of infectious virus produced in such trans-encapsidation reactions reached 4 x 10(7) PFU/ml. The HeLa S10 translation-RNA replication reactions represent an efficient in vitro system for authentic poliovirus replication, including protein synthesis, polyprotein processing, RNA replication, and virus assembly.

Journal ArticleDOI
TL;DR: It is demonstrated here that infection of C57BL/6 and BALB/c mice with recombinant SFV expressing the nucleoprotein (NP) of influenza virus (SFV-NP) resulted in efficient priming of influenzairus-specific CD8+ cytotoxic T-cell responses, and suggested that it may have a potential as a recombinant vaccine.
Abstract: The Semliki Forest virus (SFV) expression system can be used to package recombinant RNA into infectious suicide particles. Such RNA encodes only the SFV replicase and the heterologous protein but no structural proteins of SFV, and it is thus deficient in productive replication. We demonstrate here that infection of C57BL/6 (H-2b) and BALB/c (H-2d) mice with recombinant SFV expressing the nucleoprotein (NP) of influenza virus (SFV-NP) resulted in efficient priming of influenza virus-specific CD8+ cytotoxic T-cell (CTL) responses. The generated CTLs lysed both homologous (A/PR/8/34) and heterologous (A/HK/68) influenza virus-infected, or peptide-coated, target cells to a similar degree as CTLs induced by wild-type influenza virus in a major histocompatibility complex class I-restricted fashion. As few as 100 infectious units of virus induced a strong CTL response. Induction of CTL by SFV-NP could also be achieved in CD4 gene-targeted mice, demonstrating the independence of the primary CTL response of CD4+ helper T cells. One immunization generated a CTL response that peaked after 1 week, and an additional booster injection generated a CTL memory, which was still detectable after 40 days. SFV-NP immunizations also generated high-titered IgG humoral responses that remained significant after several months. These results demonstrate that the recombinant SFV suicide system is highly efficient in antigen presentation and suggest that it may have a potential as a recombinant vaccine.

Journal ArticleDOI
TL;DR: RNA and ribonuclease-resistant RNA analogs that bound and neutralized Rous sarcoma virus were isolated from a large pool of random sequences by multiple cycles of in vitro selection using infectious viral particles and were shown to neutralize RSV by interacting with the virus, rather than by adversely affecting the host cells.
Abstract: RNA and ribonuclease-resistant RNA analogs that bound and neutralized Rous sarcoma virus (RSV) were isolated from a large pool of random sequences by multiple cycles of in vitro selection using infectious viral particles. The selected RNA pool of RSV-binding sequences at a concentration of 0.16 microM completely neutralized the virus. Of 19 sequences cloned from the selected pool, 5 inhibited RSV infection. The selected RNA and RNA analogs were shown to neutralize RSV by interacting with the virus, rather than by adversely affecting the host cells. The selection of the anti-RSV RNA and RNA analogs by intact virions immediately suggests the potential application of this approach to develop RNA and RNA analogs as inhibitors of other viruses such as human immunodeficiency virus.

Journal ArticleDOI
01 Aug 1995-Virology
TL;DR: A convenient system for analyzing bunyavirus transcription using a recombinant RNA template derived from the plasmid pBUNSCAT, which comprises a negative-sense reporter gene flanked by the exact 5' and 3' untranslated regions of the Bunyamwera virus (BUN) S RNA segment, which permits investigation of both the protein and RNA sequence requirements for transcription.

Journal ArticleDOI
TL;DR: The 3'-terminal SL RNA of another flavivirus, dengue virus type 3, specifically competed with the WNV (+)3'SL RNA in gel shift assays, suggesting that the host proteins identified in this study are flaviv virus specific.
Abstract: The first 83 3' nucleotides of the genome RNA of the flavivirus West Nile encephalitis virus (WNV) form a stable stem-loop (SL) structure which is followed in the genome by a smaller SL. These 3' structures are highly conserved among divergent flaviviruses, suggesting that they may function as cis-acting signals for RNA replication and as such might specifically bind to cellular or viral proteins. Cellular proteins from uninfected and WNV-infected BHK-21 S100 cytoplasmic extracts formed three distinct complexes with the WNV plus-strand 3' SL [(+)3'SL] RNA in a gel mobility shift assay. Subsequent competitor gel shift analyses showed that two of these RNA-protein complexes, complexes 1 and 2, contained cell proteins that specifically bound to the WNV (+)3'SL RNA. UV-induced cross-linking and Northwestern blotting analyses detected WNV (+)3'SL RNA-binding proteins of 56, 84, and 105 kDa. When the S100 cytoplasmic extracts were partially purified by ion-exchange chromatography, a complex that comigrated with complex 1 was detected in fraction 19, while a complex that comigrated with complex 2 was detected in fraction 17. UV-induced cross-linking experiments indicated that an 84-kDa cell protein in fraction 17 and a 105-kDa protein in fraction 19 bound specifically to the WNV (+)3'SL RNA. In addition to binding to the (+)3'SL RNA, the 105-kDa protein bound to the SL structure located at the 3' end of the WNV minus-strand RNA. Initial mapping studies indicated that the 84- and 105-kDa proteins bind to different regions of the (+)3'SL RNA. The 3'-terminal SL RNA of another flavivirus, dengue virus type 3, specifically competed with the WNV (+)3'SL RNA in gel shift assays, suggesting that the host proteins identified in this study are flavivirus specific.

Journal ArticleDOI
01 Apr 1995-Virology
TL;DR: A series of mutations derived from an infectious cDNA clone demonstrated that both the p33 and the p92 proteins were required for replication in protoplasts and the ratio of the two proteins was maintained in the replication-competent mutants.

Journal Article
01 Jul 1995-RNA
TL;DR: A model in which poliovirus 3D polymerase functions both as a catalytic polymerase and as a cooperative single-stranded RNA-binding protein during RNA-dependent RNA synthesis is proposed.
Abstract: Using a hairpin primer/template RNA derived from sequences present at the 3' end of the poliovirus genome, we investigated the RNA-binding and elongation activities of highly purified poliovirus 3D polymerase. We found that surprisingly high polymerase concentrations were required for efficient template utilization. Binding of template RNAs appeared to be the primary determinant of efficient utilization because binding and elongation activities correlated closely. Using a three-filter binding assay, polymerase binding to RNA was found to be highly cooperative with respect to polymerase concentration. At pH 5.5, where binding was most cooperative, a Hill coefficient of 5 was obtained, indicating that several polymerase molecules interact to retain the 110-nt RNA in a filter-bound complex. Chemical crosslinking with glutaraldehyde demonstrated physical polymerase-polymerase interactions, supporting the cooperative binding data. We propose a model in which poliovirus 3D polymerase functions both as a catalytic polymerase and as a cooperative single-stranded RNA-binding protein during RNA-dependent RNA synthesis.

Journal ArticleDOI
TL;DR: A new mechanism for persistent RNA-DNA hybrid formation is revealed and a step in priming mitochondrial DNA replication that requires both mitochondrial RNA polymerase and an rG-dC sequence-specific event to form an extensive RNA- DNA hybrid is suggested.
Abstract: Critical features of the mitochondrial leading-strand DNA replication origin are conserved from Saccharomyces cerevisiae to humans. These include a promoter and a downstream GC-rich sequence block (CSBII) that encodes rGs within the primer RNA. During in vitro transcription at yeast mitochondrial replication origins, there is stable and persistent RNA-DNA hybrid formation that begins at the 5' end of the rG region. The short rG-dC sequence is the necessary and sufficient nucleic acid element for establishing stable hybrids, and the presence of rGs within the RNA strand of the RNA-DNA hybrid is required. The efficiency of hybrid formation depends on the length of RNA synthesized 5' to CSBII and the type of RNA polymerase employed. Once made, the RNA strand of an RNA-DNA hybrid can serve as an effective primer for mitochondrial DNA polymerase. These results reveal a new mechanism for persistent RNA-DNA hybrid formation and suggest a step in priming mitochondrial DNA replication that requires both mitochondrial RNA polymerase and an rG-dC sequence-specific event to form an extensive RNA-DNA hybrid.