scispace - formally typeset
Search or ask a question

Showing papers on "RNA-dependent RNA polymerase published in 1998"


Patent
21 Dec 1998
TL;DR: In this article, a double-stranded RNA has been used to inhibit gene expression of a target gene in a living cell in order to identify the source and target genes in the cell.
Abstract: A process is provided of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and of a portion of the target gene are identical. The present invention is distinguished from prior art interference in gene expression by antisense or triple-strand methods.

1,813 citations


Journal ArticleDOI
TL;DR: It is discovered that an RNA structure at the 5' end of the viral genome, next to the internal ribosomal entry site, carries signals that control both viral translation and RNA synthesis.
Abstract: In positive-stranded viruses, the genomic RNA serves as a template for both translation and RNA replication. Using poliovirus as a model, we examined the interaction between these two processes. We show that the RNA polymerase is unable to replicate RNA templates undergoing translation. We discovered that an RNA structure at the 5′ end of the viral genome, next to the internal ribosomal entry site, carries signals that control both viral translation and RNA synthesis. The interaction of this RNA structure with the cellular factor PCBP up-regulates viral translation, while the binding of the viral protein 3CD represses translation and promotes negative-strand RNA synthesis. We propose that the interaction of 3CD with this RNA structure controls whether the genomic RNA is used for translation or RNA replication.

510 citations


Journal ArticleDOI
21 May 1998-Nature
TL;DR: The identification of the internal ribosomal-entry site, which allows the entry of ribosomes into viral mRNA independently of the 5′ mRNA end, has been solved and it is shown that VPg can be uridylylated by the poliovirus RNA polymerase 3Dpol.
Abstract: A small protein, VPg, is covalently linked to the 5′ end of the plus-stranded poliovirus genomic RNA1,2,3. Poliovirus messenger RNA, identical in nucleotide sequence to genomic RNA, is not capped at its 5′ end by the methylated structure that is common to most eukaryotic mRNAs. These discoveries presented two problems. First, as cap structures are usually required for translation of mRNA into protein, how does this uncapped viral RNA act as a template for translation? Second, what is the function of VPg? The identification of the internal ribosomal-entry site, which allows the entry of ribosomes into viral mRNA independently of the 5′ mRNA end, has solved the first conundrum4,5,6. Here we describe the resolution of the second problem. VPg is linked to the genomic RNA through the 5′-terminal uridylic acid of the RNA. We show that VPg can be uridylylated by the poliovirus RNA polymerase 3Dpol. Uridylylated VPg can then prime the transcription of polyadenylate RNA by 3Dpol to produce VPg-linked poly(U). Initiation of transcription of the poliovirus genome from the polyadenylated 3′ end therefore depends on VPg.

396 citations


Journal ArticleDOI
05 Jun 1998-Virology
TL;DR: The results indicate that the flavivirus replication complex includes NS2A and NS4A in the VP in addition to the previously identified NS1 and NS3.

318 citations


Journal ArticleDOI
20 Dec 1998-Virology
TL;DR: Whether all RdRps will have structures similar to those found in the poliovirus polymerase structure is addressed and structural predictions are used to explain the phenotypes of a collection of mutations that exist in several RNA polymerases.

303 citations


Journal ArticleDOI
TL;DR: Initiation of transcription is a complicated process involving several different phases: promoter location byRNA polymerase, formation of a competent initiation complex, synthesis of the initial phosphodiester bonds, and movement of RNA polymerase from the promoter as it enters the elongation phase.
Abstract: Initiation of transcription is a complicated process involving several different phases: promoter location by RNA polymerase, formation of a competent initiation complex, synthesis of the initial phosphodiester bonds, and movement of RNA polymerase from the promoter as it enters the elongation phase

297 citations


Journal ArticleDOI
TL;DR: It is demonstrated that DsrA acts via specific RNA:RNA base pairing interactions at the hns locus to antagonize H-NS translation and suggested that positive regulation of rpoS by D srA occurs by formation of an RNA structure that activates a cis-acting translational operator.
Abstract: DsrA is an 87-nt untranslated RNA that regulates both the global transcriptional silencer and nucleoid protein H-NS and the stationary phase and stress response sigma factor RpoS (σs). We demonstrate that DsrA acts via specific RNA:RNA base pairing interactions at the hns locus to antagonize H-NS translation. We also give evidence that supports a role for RNA:RNA interactions at the rpoS locus to enhance RpoS translation. Negative regulation of hns by DsrA is achieved by the RNA:RNA interaction blocking translation of hns RNA. In contrast, results suggest that positive regulation of rpoS by DsrA occurs by formation of an RNA structure that activates a cis-acting translational operator. Sequences within DsrA complementary to three additional genes, argR, ilvIH, and rbsD, suggest that DsrA is a riboregulator of gene expression that acts coordinately via RNA:RNA interactions at multiple loci.

292 citations


Journal ArticleDOI
TL;DR: Protein interaction studies demonstrate a direct interaction between RNA polymerase II and the histone acetyltransferases p300 and PCAF, and p300 interacts specifically with the nonphosphorylated, initiation-competent form of RNA polymerases II.
Abstract: We have isolated a human RNA polymerase II complex that contains chromatin structure remodeling activity and histone acetyltransferase activity. This complex contains the Srb proteins, the Swi-Snf complex, and the histone acetyltransferases CBP and PCAF in addition to RNA polymerase II. Notably, the general transcription factors are absent from this complex. The complex was purified by two different methods: conventional chromatography and affinity chromatography using antibodies directed against CDK8, the human homolog of the yeast Srb10 protein. Protein interaction studies demonstrate a direct interaction between RNA polymerase II and the histone acetyltransferases p300 and PCAF. Importantly, p300 interacts specifically with the nonphosphorylated, initiation-competent form of RNA polymerase II. In contrast, PCAF interacts with the elongation-competent, phosphorylated form of RNA polymerase II.

289 citations


Journal ArticleDOI
25 Apr 1998-Virology
TL;DR: Viral RNA replication and transcription involves not only viral RNA-dependent RNA polymerases, but also cellular proteins, the majority of which are subverted from the RNA-processing or translation machineries of host cells, suggesting a close parallel to the mechanism of DNA-dependentRNA synthesis.

286 citations


Journal ArticleDOI
TL;DR: It is shown here that Dbp5p is an ATP‐dependent RNA helicase required for polyadenylated [poly(A)+] RNA export and may play a role in unloading or remodeling messenger RNA particles (mRNPs) upon arrival in the cytoplasm and in coupling mRNP export and translation.
Abstract: The DBP5 gene encodes a putative RNA helicase of unknown function in the yeast Saccharomyces cerevisiae. It is shown here that Dbp5p is an ATP-dependent RNA helicase required for polyadenylated [poly(A)+] RNA export. Surprisingly, Dbp5p is present predominantly, if not exclusively, in the cytoplasm, and is highly enriched around the nuclear envelope. This observation raises the possibility that Dbp5p may play a role in unloading or remodeling messenger RNA particles (mRNPs) upon arrival in the cytoplasm and in coupling mRNP export and translation. The functions of Dbp5p are likely to be conserved, since its potential homologues can be found in a variety of eukaryotic cells.

265 citations


Journal ArticleDOI
TL;DR: The C-terminal region of NS5B, which is dispensable for the RdRP activity, dramatically affected the subcellular localization ofNS5B retaining it in perinuclear sites in transiently overexpressed mammalian cells and may provide some clues to dissecting the molecular mechanism of the HCV replication and also act as a basis for developing new anti-viral drugs.

Journal ArticleDOI
TL;DR: Results suggest that a direct interaction of NP with polymerase proteins may be involved in regulating the switch of viral RNA synthesis from transcription to replication.
Abstract: Influenza virus nucleoprotein (NP) is a critical factor in the viral infectious cycle in switching influenza virus RNA synthesis from transcription mode to replication mode. In this study, we investigated the interaction of NP with the viral polymerase protein complex. Using coimmunoprecipitation with monospecific or monoclonal antibodies, we observed that NP interacted with the RNP-free polymerase protein complex in influenza virus-infected cells. In addition, coexpression of the components of the polymerase protein complex (PB1, PB2, or PA) with NP either together or pairwise revealed that NP interacts with PB1 and PB2 but not PA. Interaction of NP with PB1 and PB2 was confirmed by both coimmunoprecipitation and histidine tagging of the NP-PB1 and NP-PB2 complexes. Further, it was observed that NP-PB2 interaction was rather labile and sensitive to dissociation in 0.1% sodium dodecyl sulfate and that the stability of NP-PB2 interaction was regulated by the sequences present at the COOH terminus of NP. Analysis of NP deletion mutants revealed that at least three regions of NP interacted independently with PB2. A detailed analysis of the COOH terminus of NP by mutation of serine-to-alanine (SA) residues either individually or together demonstrated that SA mutations in this region did not affect the binding of NP to PB2. However, some SA mutations at the COOH terminus drastically affected the functional activity of NP in an in vivo transcription-replication assay, whereas others exhibited a temperature-sensitive phenotype and still others had no effect on the transcription and replication of the viral RNA. These results suggest that a direct interaction of NP with polymerase proteins may be involved in regulating the switch of viral RNA synthesis from transcription to replication.

Journal ArticleDOI
TL;DR: The simplifying assumption that holoenzymes in living cells resemble the more complex preparations that consist of near stoichiometric levels of most components known to be generally involved in initiation other than TATA-binding protein (TBP) and its associated factors is made.

Journal ArticleDOI
07 Aug 1998-Science
TL;DR: A model is proposed in which direct binding of RNA-2 to RNA-1 trans-activates sgRNA synthesis, which is unusual among RNA viruses, which typically rely on protein regulators.
Abstract: The red clover necrotic mosaic virus genome is composed of two single-stranded RNA components, RNA-1 and RNA-2. The viral capsid protein is translated from a subgenomic RNA (sgRNA) that is transcribed from genomic RNA-1. Here, a 34-nucleotide sequence in RNA-2 is shown to be required for transcription of sgRNA. Mutations that prevent base-pairing between the RNA-1 subgenomic promoter and the 34-nucleotide trans-activator prevent expression of a reporter gene. A model is proposed in which direct binding of RNA-2 to RNA-1 trans-activates sgRNA synthesis. This RNA-mediated regulation of transcription is unusual among RNA viruses, which typically rely on protein regulators.

Journal ArticleDOI
TL;DR: It is demonstrated that purified U5 snRNPs exhibit ATP-dependent unwinding of U4/U6 RNA duplices in vitro, raising the interesting possibility that this RNA helicase catalyzes unwinding in the spliceosome.
Abstract: Splicing of nuclear precursors of mRNA (pre-mRNA) involves dynamic interactions between the RNA constituents of the spliceosome. The rearrangement of RNA–RNA interactions, such as the unwinding of the U4/U6 duplex, is believed to be driven by ATP-dependent RNA helicases. We recently have shown that spliceosomal U5 small nuclear ribonucleoproteins (snRNPs) from HeLa cells contain two proteins, U5–200kD and U5–100kD, which share homology with the DEAD/DEXH-box families of RNA helicases. Here we demonstrate that purified U5 snRNPs exhibit ATP-dependent unwinding of U4/U6 RNA duplices in vitro. To identify the protein responsible for this activity, U5 snRNPs were depleted of a subset of proteins under high salt concentrations and assayed for RNA unwinding. The activity was retained in U5 snRNPs that contain the U5–200kD protein but lack U5–100kD, suggesting that the U5–200kD protein could mediate U4/U6 duplex unwinding. Finally, U5–200kD was purified to homogeneity by glycerol gradient centrifugation of U5 snRNP proteins in the presence of sodium thiocyanate, followed by ion exchange chromatography. The RNA unwinding activity was found to reside exclusively with the U5–200kD DEXH-box protein. Our data raise the interesting possibility that this RNA helicase catalyzes unwinding of the U4/U6 RNA duplex in the spliceosome.

Journal ArticleDOI
TL;DR: The development of a versatile, novel system for creating RNase-resistant RNA that was shown to be resistant to degradation in human plasma and produced reproducible results in the Amplicor HIV-1 Monitor assay.
Abstract: The widespread use of sensitive assays for the detection of viral and cellular RNA sequences has created a need for stable, well-characterized controls and standards. We describe the development of a versatile, novel system for creating RNase-resistant RNA. “Armored RNA” is a complex of MS2 bacteriophage coat protein and RNA produced in Escherichia coli by the induction of an expression plasmid that encodes the coat protein and an RNA standard sequence. The RNA sequences are completely protected from RNase digestion within the bacteriophage-like complexes. As a prototype, a 172-base consensus sequence from a portion of the human immunodeficiency virus type 1 (HIV-1) gag gene was synthesized and cloned into the packaging vector used to produce the bacteriophage-like particles. After production and purification, the resulting HIV-1 Armored RNA particles were shown to be resistant to degradation in human plasma and produced reproducible results in the Amplicor HIV-1 Monitor assay for 180 days when stored at −20°C or for 60 days at 4°C. Additionally, Armored RNA preparations are homogeneous and noninfectious.

Journal ArticleDOI
TL;DR: Overexpression of the four viral proteins in baculovirus-infected cells resulted in a significant increase in the levels of RNA polymerase produced in the infected cells, which is consistent with the identification of theRNA polymerase subunits.
Abstract: A DNA-dependent RNA polymerase was purified to homogeneity, starting from insect cells infected with the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV). The purified polymerase supported accurate and specific transcription from late and very late promoters but was not active on viral early promoters. Thus, promoter recognition is an integral function of the purified enzyme. The purified RNA polymerase was composed of only four equimolar subunits, which makes it the simplest DNA-directed RNA polymerase from a eukaryotic source described so far. Amino-terminal protein sequencing, peptide fingerprinting, and immunochemical analyses were used to identify the four subunits, all of which are virus encoded. Overexpression of the four viral proteins (LEF-8, LEF-4, LEF-9, and p47) in baculovirus-infected cells resulted in a significant increase in the levels of RNA polymerase produced in the infected cells. Thus, the overexpression data are consistent with our identification of the RNA polymerase subunits.

Journal ArticleDOI
TL;DR: Surprisingly, a subgenomic RNA molecule, DI9c, corresponding to a previously characterized defective interfering particle, was found to support both steps of RNA replication in the absence of a helper virus as well, thus functioning as an autonomous replicon.
Abstract: As an initial approach to define the requirements for the replication of bovine viral diarrhea virus (BVDV), a member of the Flaviviridae family with a positive-strand RNA genome, full-length genomic and subgenomic RNAs were originated by in vitro transcription of diverse BVDV cDNA constructs and transfected into eucaryotic host cells. RNA replication was measured either directly by an RNase protection method or by monitoring the synthesis of viral protein. When full-length BVDV cRNA was initially applied, the synthesis of negative-strand RNA intermediates as well as progeny positive-strand RNA was detected posttransfection in the cytoplasm of the host cells. Compared to the negative-strand RNA intermediate, an excess of positive-strand RNA was synthesized. Surprisingly, a subgenomic RNA molecule, DI9c, corresponding to a previously characterized defective interfering particle, was found to support both steps of RNA replication in the absence of a helper virus as well, thus functioning as an autonomous replicon. DI9c comprises the 5' and 3' untranslated regions of the BVDV genome and the coding regions of the autoprotease Npro and the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. Most interestingly, the NS2 polypeptide was thus determined to be nonessential for RNA replication. As expected, deletion of the genomic 3' end as well as abolition of the catalytic function of the virus-encoded serine protease resulted in DI9c molecules that were unable to replicate. Deletion of the entire Npro gene also destroyed the ability of DI9c molecules to replicate. On the other hand, DI9c derivatives in which the 5' third of the Npro gene was fused to a ubiquitin gene, allowing the proteolytic release of NS3 in trans, turned out to be replication competent. These results suggest that the RNA sequence located at the 5' end of the open reading frame exerts an essential role during BVDV replication. Replication of DI9c and DI9c derivatives was found not to be limited to host cells of bovine origin, indicating that cellular factors functioning as potential parts of the viral replication machinery are well conserved between different mammalian cells. Our data provide an important step toward the ready identification and characterization of viral factors and genomic elements involved in the life cycle of pestiviruses. The implications for other Flaviviridae and, in particular, the BVDV-related human hepatitis C virus are discussed.

Journal ArticleDOI
TL;DR: The data show that a hybrid at least 9 nt long, formed between the template DNA and 3'-proximal RNA transcript, is necessary for the high processivity of EC during RNA chain elongation.

Journal ArticleDOI
TL;DR: In this article, a number of ORF1a-encoded hydrophobic domains were postulated to be involved in the membrane association of the arterivirus replication complex.
Abstract: Among the functions of the replicase of equine arteritis virus (EAV; family Arteriviridae, order Nidovirales) are important viral enzyme activities such as proteases and the putative RNA polymerase and RNA helicase functions. The replicase is expressed in the form of two polyproteins (open reading frame 1a [ORF1a] and ORF1ab), which are processed into 12 nonstructural proteins by three viral proteases. In immunofluorescence assays, the majority of these cleavage products localized to the perinuclear region of the cell. A dense granular and vesicular staining was observed, which strongly suggested membrane association. By using confocal microscopy and double-label immunofluorescence, the distribution of the EAV replicase was shown to overlap with that of PDI, a resident protein of the endoplasmic reticulum and intermediate compartment. An in situ labeling of nascent viral RNA with bromo-UTP demonstrated that the membrane-bound complex in which the replicase subunits accumulate is indeed the site of viral RNA synthesis. A number of ORF1a-encoded hydrophobic domains were postulated to be involved in the membrane association of the arterivirus replication complex. By using various biochemical methods (Triton X-114 extraction, membrane purification, and sodium carbonate treatment), replicase subunits containing these domains were shown to behave as integral membrane proteins and to be membrane associated in infected cells. Thus, contribution to the formation of a membrane-bound scaffold for the viral replication-transcription complex appears to be an important novel function for the arterivirus ORF1a replicase polyprotein.

Journal ArticleDOI
TL;DR: A model is proposed that identifies a structural feature present in all the small, stable RNAs of E. coli, and describes how this structure together with the RNases influences the common mechanism for 3' maturation.
Abstract: In addition to tRNA and 5S RNA, Escherichia coli contains several other small, stable RNA species; these are M1, 10Sa, 6S, and 4.5S RNA. Although these RNAs are initially synthesized as precursor molecules, relatively little is known about their maturation. The data presented here show that 3′ exoribonucleolytic trimming is required for the final maturation of each of these molecules. As found previously with tRNA, but not 5S RNA, any one of a number of exoribonucleases can carry out the trimming reaction in vivo, although RNases T and PH are most effective. In their absence, large amounts of immature molecules accumulate for most of the RNAs, and these can be converted to the mature forms in vitro by the purified RNases. A model is proposed that identifies a structural feature present in all the small, stable RNAs of E. coli, and describes how this structure together with the RNases influences the common mechanism for 3′ maturation.

Journal ArticleDOI
TL;DR: Data show that the M2 protein functions as a transcriptional antiterminator that enhances the ability of the viral RNA polymerase to read through intergenic junctions and inhibit viral RNA replication and mRNA transcription.
Abstract: The mRNA encoding the M2 protein of respiratory syncytial (RS) virus contains two open reading frames (ORFs). ORF1 encodes the 22-kDa structural protein, M2, and ORF2 has the potential to encode a 10-kDa protein (90 amino acids). Using a vaccinia virus T7 expression system, we examined the RNA synthetic activities of mono- and dicistronic subgenomic replicons of RS virus by direct metabolic labeling of RNA in the presence and absence of the products of ORF1 and ORF2. In the absence of ORF1 and ORF2, the negative- and positive-sense products of genomic RNA replication and positive-sense polyadenylated mRNA(s) were synthesized. Expression of the whole M2 transcription unit (containing ORF1 and ORF2) or ORF1 alone caused an increase in the synthesis of polyadenylated mRNA, the majority of which was due to a substantial increase in the quantity of polycistronic mRNAs generated by the polymerase failing to terminate at gene end signals. In agreement with previous reports, the ORF2 product was found to inhibit viral RNA replication and mRNA transcription. These data show that the M2 protein functions as a transcriptional antiterminator that enhances the ability of the viral RNA polymerase to read through intergenic junctions. The role of such a function during the viral life cycle is discussed.

Journal ArticleDOI
01 Dec 1998-RNA
TL;DR: Novel insight is provided into the mechanisms of replication of a positive-strand RNA virus, as the involvement of an internally located RNA structure in the recognition of viral RNA by the viral replicase complex is defined.
Abstract: Cis-acting RNA signals are required for replication of positive-strand viruses such as the picornaviruses. Although these generally have been mapped to the 5' and/or 3' termini of the viral genome, RNAs derived from human rhinovirus type 14 are unable to replicate unless they contain an internal cis-acting replication element (cre) located within the genome segment encoding the capsid proteins. Here, we show that the essential cre sequence is 83-96 nt in length and located between nt 2318-2413 of the genome. Using dicistronic RNAs in which translation of the P1 and P2-P3 segments of the polyprotein were functionally dissociated, we further demonstrate that translation of the cre sequence is not required for RNA replication. Thus, although it is located within a protein-coding segment of the genome, the cre functions as an RNA entity. Computer folds suggested that cre sequences could form a stable structure in either positive- or minus-strand RNA. However, an analysis of mutant RNAs containing multiple covariant and non-covariant nucleotide substitutions within these putative structures demonstrated that only the predicted positive-strand structure is essential for efficient RNA replication. The absence of detectable minus-strand synthesis from RNAs that lack the cre suggests that the cre is required for initiation of minus-strand RNA synthesis. Since a lethal 3' noncoding region mutation could be partially rescued by a compensating mutation within the cre, the cre appears to participate in a long-range RNA-RNA interaction required for this process. These data provide novel insight into the mechanisms of replication of a positive-strand RNA virus, as they define the involvement of an internally located RNA structure in the recognition of viral RNA by the viral replicase complex. Since internally located RNA replication signals have been shown to exist in several other positive-strand RNA virus families, these observations are potentially relevant to a wide array of related viruses.

Journal ArticleDOI
15 Sep 1998-Virology
TL;DR: The profile of several inhibitors of RdRp activity and substrate analogs indicated that the enzyme has a strong preference for ribonucleoside 5'-triphosphates and that it closely resembles 3Dpol of picornaviruses.

Journal ArticleDOI
TL;DR: In this paper, the T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli, and a crystal structure of the complex reveals that Lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition.
Abstract: The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold.

Journal ArticleDOI
TL;DR: Inhibition of transcription of rRNA in Escherichia coli upon amino acid starvation is thought to be due to the binding of ppGpp to RNA polymerase, but the nature of this interaction still remains obscure.
Abstract: Background Inhibition of transcription of rRNA in Escherichia coli upon amino acid starvation is thought to be due to the binding of ppGpp to RNA polymerase. However, the nature of this interaction still remains obscure. Results Here, the azido-derivative of ppGpp was synthesized from azido-GDP and [γ-32P]ATP by way of the phosphate transfer reaction of the RelA enzyme. The product was subsequently characterized by one and two-dimensional chromatography. The resulting compound [32P]azido-ppGpp, where the azido group is attached to the base moiety, was purified to homogeneity and was photo-crosslinked to Escherichia coli RNA polymerase. SDS-PAGE analysis of the azido-ppGpp-bound enzyme, tryptic digestion and Western blot analysis suggested that azido-ppGpp binds to the β-subunit of RNA polymerase. Conclusion It was observed that both the N-terminal and C-terminal domains of the β-subunit were labelled with azido-ppGpp in the native enzyme. However, under denaturing conditions only the C-terminal part from amino acid residue 802 to residue 1211/1216/1223 was predominantly crosslinked to azido-ppGpp. The excess of unlabelled ppGpp competes with azido-ppGpp for binding to the enzyme. azido-ppGpp inhibits single-round transcription at the stringent promoter like rrnBP1. In addition, ribosomal protein genes were also found to be inhibited by N3ppGpp. On the other hand, transcription at the lac UV5 promoter remained unaffected upon the addition of azido-ppGpp.

Journal ArticleDOI
TL;DR: It is demonstrated that the Escherichia coli omega protein, which copurifies with RNA polymerase, can function as a transcriptional activator when linked covalently to a DNA-binding protein.
Abstract: Evidence obtained in both eukaryotes and prokaryotes indicates that arbitrary contacts between DNA-bound proteins and components of the transcriptional machinery can activate transcription. Here we demonstrate that the Escherichia coli omega protein, which copurifies with RNA polymerase, can function as a transcriptional activator when linked covalently to a DNA-binding protein. We show further that omega can function as an activation target when this covalent linkage is replaced by a pair of interacting polypeptides fused to the DNA-binding protein and to omega, respectively. Our findings imply that the omega protein is associated with RNA polymerase holoenzyme in vivo, and provide support for the hypothesis that contact between a DNA-bound protein and any component of E. coli RNA polymerase can activate transcription.

Journal ArticleDOI
TL;DR: The results suggest that NS3, NS4A and NS5B interact with each other to form a complex that functions as part of the replication machinery of HCV.

Journal ArticleDOI
06 Aug 1998-Oncogene
TL;DR: The results suggest that the interaction of the amino terminus of EWS with hsRPB7 contributes to the transactivation function of E WS-Fli1 and, since hs RPB7 has characteristics of a regulatory subunit of RNA polymerase II, may influence promoter selectivity.
Abstract: As a result of the t(11;22)(q24;q12) chromosomal translocation characterizing the Ewing family of tumors (ET), the amino terminal portion of EWS, an RNA binding protein of unknown function, is fused to the DNA-binding domain of the ets transcription factor Fli1. The hybrid EWS-Fli1 protein acts as a strong transcriptional activator and, in contrast to wildtype Fli1, is a potent transforming agent. Similar rearrangements involving EWS or the highly homologous TLS with various transcription factors have been found in several types of human tumors. Employing yeast two-hybrid cloning we isolated the seventh largest subunit of human RNA polymerase II (hsRPB7) as a protein that specifically interacts with the amino terminus of EWS. This association was confirmed by in vitro immunocoprecipitation. In nuclear extracts, hsRPB7 was found to copurify with EWS-Fli1 but not with Fli1. Overexpression of recombinant hsRPB7 specifically increased gene activation by EWS-chimeric transcription factors. Replacement of the EWS portion by hsRPB7 in the oncogenic fusion protein restored the transactivating potential of the chimera. Our results suggest that the interaction of the amino terminus of EWS with hsRPB7 contributes to the transactivation function of EWS-Fli1 and, since hsRPB7 has characteristics of a regulatory subunit of RNA polymerase II, may influence promoter selectivity.

Journal ArticleDOI
TL;DR: The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.
Abstract: The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.