scispace - formally typeset
Search or ask a question
Topic

RNA-dependent RNA polymerase

About: RNA-dependent RNA polymerase is a research topic. Over the lifetime, 13904 publications have been published within this topic receiving 767954 citations. The topic is also known as: RdRp & RNA replicase.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of the viral UTRs in evasion of the nsp1-mediated shutoff is investigated and indicates a novel mechanism of viral gene expression control by nsp2 and new insight into understanding the pathogenesis of SARS.
Abstract: Severe acute respiratory syndrome (SARS) coronavirus (SCoV) is an enveloped virus containing a single-stranded, positive-sense RNA genome. Nine mRNAs carrying a set of common 5' and 3' untranslated regions (UTR) are synthesized from the incoming viral genomic RNA in cells infected with SCoV. A nonstructural SCoV nsp1 protein causes a severe translational shutoff by binding to the 40S ribosomal subunits. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNA. However, the mechanism by which SCoV viral proteins are efficiently produced in infected cells in which host protein synthesis is impaired by nsp1 is unknown. In this study, we investigated the role of the viral UTRs in evasion of the nsp1-mediated shutoff. Luciferase activities were significantly suppressed in cells expressing nsp1 together with the mRNA carrying a luciferase gene, while nsp1 failed to suppress luciferase activities of the mRNA flanked by the 5'UTR of SCoV. An RNA-protein binding assay and RNA decay assay revealed that nsp1 bound to stem-loop 1 (SL1) in the 5'UTR of SCoV RNA and that the specific interaction with nsp1 stabilized the mRNA carrying SL1. Furthermore, experiments using an SCoV replicon system showed that the specific interaction enhanced the SCoV replication. The specific interaction of nsp1 with SL1 is an important strategy to facilitate efficient viral gene expression in infected cells, in which nsp1 suppresses host gene expression. Our data indicate a novel mechanism of viral gene expression control by nsp1 and give new insight into understanding the pathogenesis of SARS.

184 citations

Journal ArticleDOI
TL;DR: DNA sequencing and nuclease S1 analyses provided the primary structure of RpII215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster, and germline transformation demonstrated that a 9.4 kb genomic DNA segment containing the α-amanitinresistant allele includes all sequences required to produce amanitin-resistant transformants.
Abstract: We have characterized RpII215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster. DNA sequencing and nuclease S1 analyses provided the primary structure of this gene, its 7 kb RNA and 215 kDa protein products. The amino-terminal 80% of the subunit harbors regions with strong homology to the β′ subunit of Escherichia coli RNA polymerase and to the largest subunits of other eukaryotic RNA polymerases. The carboxyl-terminal 20% of the subunit is composed of multiple repeats of a seven amino acid consensus sequence, Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The homology domains, as well as the unique carboxyl-terminal structure, are considered in the light of current knowledge of RNA polymerase II and the properties of its largest subunit. Additionally, germline transformation demonstrated that a 9.4 kb genomic DNA segment containing the α-amanitinresistant allele, RpII215 C4 , includes all sequences required to produce amanitin-resistant transformants.

183 citations

Journal ArticleDOI
07 Feb 2013-Nature
TL;DR: Crystal structures of human IFIT5, its complex with PPP-RNAs, and an amino-terminal fragment of IFIT1 reveal a new helical domain that houses a positively charged cavity designed to specifically engage only single-stranded P PP-RNA, thus distinguishing it from the canonical cytosolic sensor of double-Stranded viral PPP -inducible gene I.
Abstract: Interferon-induced proteins with tetratricopeptide repeats (IFITs) are innate immune effector molecules that are thought to confer antiviral defence through disruption of protein-protein interactions in the host translation-initiation machinery. However, it was recently discovered that IFITs can directly recognize viral RNA bearing a 5'-triphosphate group (PPP-RNA), which is a molecular signature that distinguishes it from host RNA. Here we report crystal structures of human IFIT5, its complex with PPP-RNAs, and an amino-terminal fragment of IFIT1. The structures reveal a new helical domain that houses a positively charged cavity designed to specifically engage only single-stranded PPP-RNA, thus distinguishing it from the canonical cytosolic sensor of double-stranded viral PPP-RNA, retinoic acid-inducible gene I (RIG-I, also known as DDX58). Mutational analysis, proteolysis and gel-shift assays reveal that PPP-RNA is bound in a non-sequence-specific manner and requires a 5'-overhang of approximately three nucleotides. Abrogation of PPP-RNA binding in IFIT1 and IFIT5 was found to cause a defect in the antiviral response by human embryonic kidney cells. These results demonstrate the mechanism by which IFIT proteins selectively recognize viral RNA, and lend insight into their downstream effector function.

183 citations

Journal ArticleDOI
TL;DR: In vivo and in vitro competition experiments using various VA1-derived, but also artificial and cellular, RNAs lead to the conclusion that exportin-5 preferentially recognizes and transports minihelix motif-containing RNAs.

183 citations

Journal ArticleDOI
TL;DR: A model is proposed that identifies a structural feature present in all the small, stable RNAs of E. coli, and describes how this structure together with the RNases influences the common mechanism for 3' maturation.
Abstract: In addition to tRNA and 5S RNA, Escherichia coli contains several other small, stable RNA species; these are M1, 10Sa, 6S, and 4.5S RNA. Although these RNAs are initially synthesized as precursor molecules, relatively little is known about their maturation. The data presented here show that 3′ exoribonucleolytic trimming is required for the final maturation of each of these molecules. As found previously with tRNA, but not 5S RNA, any one of a number of exoribonucleases can carry out the trimming reaction in vivo, although RNases T and PH are most effective. In their absence, large amounts of immature molecules accumulate for most of the RNAs, and these can be converted to the mature forms in vitro by the purified RNases. A model is proposed that identifies a structural feature present in all the small, stable RNAs of E. coli, and describes how this structure together with the RNases influences the common mechanism for 3′ maturation.

183 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
94% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
Peptide sequence
84.1K papers, 4.3M citations
90% related
Protein structure
42.3K papers, 3M citations
86% related
Binding site
48.1K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022201
2021222
2020200
2019116
2018118