scispace - formally typeset
Search or ask a question
Topic

RNA-dependent RNA polymerase

About: RNA-dependent RNA polymerase is a research topic. Over the lifetime, 13904 publications have been published within this topic receiving 767954 citations. The topic is also known as: RdRp & RNA replicase.


Papers
More filters
Journal ArticleDOI
17 May 2002-Science
TL;DR: The crystal structure of the initiating form of Thermus aquaticus RNA polymerase, containing coreRNA polymerase (α2ββ′ω) and the promoter specificity σ subunit, has been determined at 4 angstrom resolution.
Abstract: The crystal structure of the initiating form of Thermus aquaticus RNA polymerase, containing core RNA polymerase (alpha2betabeta'omega) and the promoter specificity sigma subunit, has been determined at 4 angstrom resolution. Important structural features of the RNA polymerase and their roles in positioning sigma within the initiation complex are delineated, as well as the role played by sigma in modulating the opening of the RNA polymerase active-site channel. The two carboxyl-terminal domains of sigma are separated by 45 angstroms on the surface of the RNA polymerase, but are linked by an extended loop. The loop winds near the RNA polymerase active site, where it may play a role in initiating nucleotide substrate binding, and out through the RNA exit channel. The advancing RNA transcript must displace the loop, leading to abortive initiation and ultimately to sigma release.

556 citations

Journal ArticleDOI
22 Dec 1989-Cell
TL;DR: The data indicate that the 22 5' terminal and the 26 3' terminal bases of the influenza A virus RNA are sufficient to provide the signals for RNA transcription, RNA replication, packaging of RNA into influenza virus particles.

553 citations

Journal ArticleDOI
28 Mar 1986-Science
TL;DR: Evidence is presented for the in vitro autolytic processing of dimeric and trimeric forms of this satellite RNA of tobacco ringspot virus, which apparently is reversible to form dimeric RNA from monomeric RNA, and does not require an enzyme for its catalysis.
Abstract: Associated with some plant viruses are small satellite RNA's that depend on the plant virus to provide protective coat protein and presumably at least some of the proteins necessary for satellite RNA replication. Multimeric forms of the satellite RNA of tobacco ringspot virus are probable in vivo precursors of the monomeric satellite RNA. Evidence is presented for the in vitro autolytic processing of dimeric and trimeric forms of this satellite RNA. The reaction generates biologically active monomeric satellite RNA, apparently is reversible to form dimeric RNA from monomeric RNA, and does not require an enzyme for its catalysis.

552 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to illustrate using the influenza virus NP as a well-studied example that the molecule is much more than a structural RNA-binding protein, but also functions as a key adapter molecule between virus and host cell processes.
Abstract: All viruses with negative-sense RNA genomes encode a single-strand RNA-binding nucleoprotein (NP). The primary function of NP is to encapsidate the virus genome for the purposes of RNA transcription, replication and packaging. The purpose of this review is to illustrate using the influenza virus NP as a well-studied example that the molecule is much more than a structural RNA-binding protein, but also functions as a key adapter molecule between virus and host cell processes. It does so through the ability to interact with a wide variety of viral and cellular macromolecules, including RNA, itself, two subunits of the viral RNA-dependent RNA polymerase and the viral matrix protein. NP also interacts with cellular polypeptides, including actin, components of the nuclear import and export apparatus and a nuclear RNA helicase. The evidence for the existence of each of these activities and their possible roles in transcription, replication and intracellular trafficking of the virus genome is considered.

547 citations

Journal ArticleDOI
TL;DR: The study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.
Abstract: Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3′→5′ direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2′-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5′-labeled ssRNA substrates were processed to final products of ≈8–12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5′-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.

545 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
94% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
Peptide sequence
84.1K papers, 4.3M citations
90% related
Protein structure
42.3K papers, 3M citations
86% related
Binding site
48.1K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022201
2021222
2020200
2019116
2018118