scispace - formally typeset
Search or ask a question
Topic

RNA-dependent RNA polymerase

About: RNA-dependent RNA polymerase is a research topic. Over the lifetime, 13904 publications have been published within this topic receiving 767954 citations. The topic is also known as: RdRp & RNA replicase.


Papers
More filters
Journal ArticleDOI
TL;DR: Specific contacts between the Escherichia coli RNA polymerase and the phosphates and purine bases of the A3 promoter of phage T7 cluster into three regions located approximately 10, 16, and 35 base pairs before RNA initiation site.
Abstract: Specific contacts between the Escherichia coli RNA polymerase (nucleosidetriphosphate:RNA nucleotidyl-transferase, EC2.7.7.6) and the phosphates and purine bases of the A3 promoter of phage T7 cluster into three regions located approximately 10, 16, and 35 base pairs before RNA initiation site. Two of these contain nucleotide sequences that are fairly conserved among many promoters, known as the "Pribnow box" and "-35 region" homologies; the third, just upstream from the Pribnow box, is not conserved. The polymerase binds preferentially to the coding strand and for the most part touches only one face of the DNA helix.

391 citations

Book ChapterDOI
TL;DR: All plus-strand RNA viruses replicate in association with cytoplasmic membranes of infected cells, and studies of individual nonstructural proteins have revealed that the replication complexes are associated with the membranes and targeted to the respective organelle by the ns proteins rather than RNA.
Abstract: All plus-strand RNA viruses replicate in association with cytoplasmic membranes of infected cells. The RNA replication complex of many virus families is associated with the endoplasmic reticulum membranes, for example, picorna-, flavi-, arteri-, and bromoviruses. However, endosomes and lysosomes (togaviruses), peroxisomes and chloroplasts (tombusviruses), and mitochondria (nodaviruses) are also used as sites for RNA replication. Studies of individual nonstructural proteins, the virus-specific components of the RNA replicase, have revealed that the replication complexes are associated with the membranes and targeted to the respective organelle by the ns proteins rather than RNA. Many ns proteins have hydrophobic sequences and may transverse the membrane like polytopic integral membrane proteins, whereas others interact with membranes monotopically. Hepatitis C virus ns proteins offer examples of polytopic transmembrane proteins (NS2, NS4B), a “tip-anchored” protein attached to the membrane by an amphipathic α-helix (NS5A) and a “tail-anchored” posttranslationally inserted protein (NS5B). Semliki Forest virus nsP1 is attached to the plasma membrane by a specific binding peptide in the middle of the protein, which forms an amphipathic α-helix. Interaction of nsP1 with membrane lipids is essential for its capping enzyme activities. The other soluble replicase proteins are directed to the endo-lysosomal membranes only as part of the initial polyprotein. Poliovirus ns proteins utilize endoplasmic reticulum membranes from which vesicles are released in COPII coats. However, these vesicles are not directed to the normal secretory pathway, but accumulate in the cytoplasm. In many cases the replicase proteins induce membrane invaginations or vesicles, which function as protective environments for RNA replication.

390 citations

Journal ArticleDOI
28 Mar 2008-Science
TL;DR: It is shown that the RNA polymerase II enzyme pauses at a promoter-proximal site of many genes in Drosophila and mammals and appears to be an important and broadly used target of gene regulation.
Abstract: Recent work has shown that the RNA polymerase II enzyme pauses at a promoter-proximal site of many genes in Drosophila and mammals. This rate-limiting step occurs after recruitment and initiation of RNA polymerase II at a gene promoter. This stage in early elongation appears to be an important and broadly used target of gene regulation.

390 citations

Journal ArticleDOI
TL;DR: Next-generation RNA sequencing is used for the first time to show that RIG-I preferentially associates with shorter, 5′ppp containing viral RNA molecules in infected cells and implies that full-length genomes of single segmented RNA virus families are not bound by Rig-I during infection.
Abstract: Intracellular detection of virus infections is a critical component of innate immunity carried out by molecules known as pathogen recognition receptors (PRRs). Activation of PRRs by their respective pathogen-associated molecular patterns (PAMPs) leads to production of proinflamatory cytokines, including type I IFN, and the establishment of an antiviral state in the host. Out of all PRRs found to date, retinoic acid inducible gene I (RIG-I) has been shown to play a key role in recognition of RNA viruses. On the basis of in vitro and transfection studies, 5′ppp RNA produced during virus replication is thought to bind and activate this important sensor. However, the nature of RNA molecules that interact with endogenous RIG-I during the course of viral infection has not been determined. In this work we use next-generation RNA sequencing to show that RIG-I preferentially associates with shorter, 5′ppp containing viral RNA molecules in infected cells. We found that during Sendai infection RIG-I specifically bound the genome of the defective interfering (DI) particle and did not bind the full-length virus genome or any other viral RNAs. In influenza-infected cells RIG-I preferentially associated with shorter genomic segments as well as subgenomic DI particles. Our analysis for the first time identifies RIG-I PAMPs under natural infection conditions and implies that full-length genomes of single segmented RNA virus families are not bound by RIG-I during infection.

390 citations

Journal ArticleDOI
TL;DR: In this paper, the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain, were characterized.
Abstract: Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5′-to-3′ direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5′-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5′ cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5′-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.

390 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
94% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
Peptide sequence
84.1K papers, 4.3M citations
90% related
Protein structure
42.3K papers, 3M citations
86% related
Binding site
48.1K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022201
2021222
2020200
2019116
2018118