scispace - formally typeset
Search or ask a question
Topic

RNA-dependent RNA polymerase

About: RNA-dependent RNA polymerase is a research topic. Over the lifetime, 13904 publications have been published within this topic receiving 767954 citations. The topic is also known as: RdRp & RNA replicase.


Papers
More filters
Journal ArticleDOI
TL;DR: A critical role for the flavivirus MTase in viral reproduction is demonstrated and this domain is underscore this domain as a potential target for antiviral therapy.
Abstract: Many flaviviruses are globally important human pathogens. Their plus-strand RNA genome contains a 5'-cap structure that is methylated at the guanine N-7 and the ribose 2'-OH positions of the first transcribed nucleotide, adenine (m(7)GpppAm). Using West Nile virus (WNV), we demonstrate, for the first time, that the nonstructural protein 5 (NS5) mediates both guanine N-7 and ribose 2'-O methylations and therefore is essential for flavivirus 5'-cap formation. We show that a recombinant full-length and a truncated NS5 protein containing the methyltransferase (MTase) domain methylates GpppA-capped and m(7)GpppA-capped RNAs to m(7)GpppAm-RNA, using S-adenosylmethionine as a methyl donor. Furthermore, methylation of GpppA-capped RNA sequentially yielded m(7)GpppA- and m(7)GpppAm-RNA products, indicating that guanine N-7 precedes ribose 2'-O methylation. Mutagenesis of a K(61)-D(146)-K(182)-E(218) tetrad conserved in other cellular and viral MTases suggests that NS5 requires distinct amino acids for its N-7 and 2'-O MTase activities. The entire K(61)-D(146)-K(182)-E(218) motif is essential for 2'-O MTase activity, whereas N-7 MTase activity requires only D(146). The other three amino acids facilitate, but are not essential for, guanine N-7 methylation. Amino acid substitutions within the K(61)-D(146)-K(182)-E(218) motif in a WNV luciferase-reporting replicon significantly reduced or abolished viral replication in cells. Additionally, the mutant MTase-mediated replication defect could not be trans complemented by a wild-type replicase complex. These findings demonstrate a critical role for the flavivirus MTase in viral reproduction and underscore this domain as a potential target for antiviral therapy.

325 citations

Journal ArticleDOI
17 Sep 2020-Cell
TL;DR: Cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase are presented, detailing a new pocket for anti-viral therapeutic development.

325 citations

Journal ArticleDOI
TL;DR: To determine which of these models is correct it will be necessary to find out whether transgene methylation, which is frequently associated with the potential of transgenes to confer post-transcriptional gene silencing, is a cause or a consequence of the process.
Abstract: Post-transcriptional gene silencing in transgenic plants is the manifestation of a mechanism that suppresses RNA accumulation in a sequence-specific manner. The target RNA species may be the products of transgenes, endogenous plant genes or viral RNAs. For an RNA to be a target it is necessary only that it has sequence homology to the sense RNA product of the transgene. There are three current hypotheses to account for the mechanism of post transcriptional gene silencing. These models all require production of an antisense RNA of the RNA targets to account for the specificity of the mechanism. There could be either direct transcription of the antisense RNA from the transgene, antisense RNA produced in response to over expression of the transgene or antisense RNA produced in response to the production of an aberrant sense RNA product of the transgene. To determine which of these models is correct it will be necessary to find out whether transgene methylation, which is frequently associated with the potential of transgenes to confer post-transcriptional gene silencing, is a cause or a consequence of the process.

324 citations

Journal ArticleDOI
TL;DR: Results indicate that a relatively long stretch of base pairs, uninterrupted by either a mismatch or a discontinuity in one of the complementary strands, is required for the activation of the two enzymes studied.

323 citations

Journal ArticleDOI
07 Jul 1994-Nature
TL;DR: For genes containing a 5' paused polymerase, passage of the paused RNA polymerase into an elongationally competent mode in vivo coincides with phosphorylation of the carboxy-terminal domain of the CTD.
Abstract: The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II is essential in vivo, and is found in either an unphosphorylated (IIa) or hyperphosphorylated (IIo) form. The Drosophila uninduced hsp70 and hsp26 genes, and the constitutively expressed beta-1 tubulin and Gapdh-2 genes, contain an RNA polymerase II complex which pauses after synthesizing a short transcript. We report here that, using an in vivo ultraviolet crosslinking technique and antibodies directed against the IIa and IIo forms of the CTD, these paused polymerases have an unphosphorylated CTD. For genes containing a 5' paused polymerase, passage of the paused RNA polymerase into an elongationally competent mode in vivo coincides with phosphorylation of the CTD. Also, the level of phosphorylation of the CTD of elongating polymerases is shown not to be related to the level of transcription, but is promoter specific.

323 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
94% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
Peptide sequence
84.1K papers, 4.3M citations
90% related
Protein structure
42.3K papers, 3M citations
86% related
Binding site
48.1K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022201
2021222
2020200
2019116
2018118