scispace - formally typeset
Search or ask a question
Topic

RNA-dependent RNA polymerase

About: RNA-dependent RNA polymerase is a research topic. Over the lifetime, 13904 publications have been published within this topic receiving 767954 citations. The topic is also known as: RdRp & RNA replicase.


Papers
More filters
Journal ArticleDOI
01 Jul 2004-Virology
TL;DR: Detergent-resistant membrane (DRM) fractions containing NS proteins and viral RNA were capable ofHCV RNA synthesis using the endogenous HCV RNA template, and suggested that the HCV RCs are protected within lipid rafts.

282 citations

Journal ArticleDOI
TL;DR: Denaturation--renaturation studies indicate that sigma is capable of an unusually rapid and complete recovery of activity after being subjected to denaturing conditions.
Abstract: An improved purification procedure is described for the sigma subunit of escherichia coli DNA-dependent RNA polymerase [ribonucleoside triphosphate:RNA nucleotidyl-transferase, EC 2.7.7.6]. The method involves chromatography of purified RNA polymerase on single-stranded DNA-agarose, Bio-Rex 70, and finally Ultragel AcA44. The sigma factor obtained is electrophoretically pure with a yield of about 40%. A number of the chemical--physical properties of sigma are presented. A molecular weight of 82,000 was determined by phosphate buffered sodium dodecyl sulfate--polyacrylamide gel electrophoresis. Ultraviolet absorption spectra were used to determine an E280nm 1% of 8.4. The amino acid composition and 12-residue N-terminal sequence (Met-Glx-Glx-Asx-Pro-Glx-(Ser or Cys)-Glx-Leu-Lys-Leu-Leu) of sigma have been determined. The isoelectric focusing properties of sigma are presented. Denaturation--renaturation studies indicate that sigma is capable of an unusually rapid and complete recovery of activity after being subjected to denaturing conditions. A stable, 40,000-dalton fragment is generated from sigma by mild trypsin treatment.

281 citations

Journal ArticleDOI
TL;DR: Findings suggest that miR-122 protects the 5′ terminal viral sequences from nucleolytic degradation or from inducing innate immune responses to the RNA terminus, and this remarkable microRNA-mRNA complex could be targeted with compounds that inactivate or interfere with this unique RNA structure.
Abstract: Hepatitis C virus subverts liver-specific microRNA, miR-122, to upregulate viral RNA abundance in both infected cultured cells and in the liver of infected chimpanzees. These findings have identified miR-122 as an attractive antiviral target. Thus, it is imperative to know whether a distinct functional complex exists between miR-122 and the viral RNA versus its normal cellular target mRNAs. Toward this goal, effects on viral RNA abundance of mutated miR-122 duplex molecules, bound at each of the two target sites in the viral genome, were compared to effects on microRNA- or siRNA-mediated regulation of reporter target mRNAs. It was found that miR-122 formed an unusual microRNA complex with the viral RNA that is distinct from miR-122 complexes with reporter mRNAs. Notably, miR-122 forms an oligomeric complex in which one miR-122 molecule binds to the 5′ terminus of the hepatitis C virus (HCV) RNA with 3′ overhanging nucleotides, masking the 5′ terminal sequences of the HCV genome. Furthermore, specific internal nucleotides as well as the 3′ terminal nucleotides in miR-122 were absolutely required for maintaining HCV RNA abundance but not for microRNA function. Both miR-122 molecules utilize similar internal nucleotides to interact with the viral genome, creating a bulge and tail in the miR-122 molecules, revealing tandemly oriented oligomeric RNA complexes. These findings suggest that miR-122 protects the 5′ terminal viral sequences from nucleolytic degradation or from inducing innate immune responses to the RNA terminus. Finally, this remarkable microRNA-mRNA complex could be targeted with compounds that inactivate miR-122 or interfere with this unique RNA structure.

281 citations

Journal ArticleDOI
TL;DR: In Saccharomyces cerevisiae, seven snRNAs (snR3, 4, 5, 8, 9, 10 and 17) are retained in the nucleus under conditions in which nucleoplasmic RNAs are lost, and may be nucleolar.
Abstract: In Saccharomyces cerevisiae, seven snRNAs (snR3, 4, 5, 8, 9, 10 and 17) are retained in the nucleus under conditions in which nucleoplasmic RNAs are lost, and may be nucleolar. All of these snRNAs show properties consistent with hydrogen bonding to pre-ribosomal RNAs; snR5 and 8 with 20S pre-rRNA, snR3, 4, 10 and 17 with 35S pre-rRNA and snR9 with 20-35S RNA. Strains lacking snR10 are impaired in growth and specifically defective in the processing of 35S RNA. Processing is slowed, leading to 35S RNA accumulation and most cleavage occurs, not at the normal sites, but at sites which in wild-type strains are used for subsequent steps in rRNA maturation.

280 citations

Journal ArticleDOI
03 Jan 1985-Nature
TL;DR: Evidence is provided that subgenomic RNA arises by internal initiation on the (−)-strand of genomic RNA, and it is believed that this also represents the first in vitro demonstration of a replicase from a eukaryotic (+)-stranded RNA virus capable of initiating synthesis of (+)-sense RNA.
Abstract: The genomes of many (+)-stranded RNA viruses, including plant viruses and alphaviruses, consist of polycistronic RNAs whose internal genes are expressed via subgenomic messenger RNAs. The mechanism(s) by which these subgenomic mRNAs arise are poorly understood. Based on indirect evidence, three models have been proposed: (1) internal initiation by the replicase on the (-)-strand of genomic RNA, (2) premature termination during (-)-strand synthesis, followed by independent replication of the subgenomic RNA and (3) processing by nuclease cleavage of genome-length RNA. Using an RNA-dependent RNA polymerase (replicase) preparation from barley leaves infected with brome mosaic virus (BMV) to synthesize the viral subgenomic RNA in vitro, we now provide evidence that subgenomic RNA arises by internal initiation on the (-)-strand of genomic RNA. We believe that this also represents the first in vitro demonstration of a replicase from a eukaryotic (+)-stranded RNA virus capable of initiating synthesis of (+)-sense RNA.

280 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
94% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
Peptide sequence
84.1K papers, 4.3M citations
90% related
Protein structure
42.3K papers, 3M citations
86% related
Binding site
48.1K papers, 2.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022201
2021222
2020200
2019116
2018118