scispace - formally typeset
Search or ask a question
Topic

RNA-induced transcriptional silencing

About: RNA-induced transcriptional silencing is a research topic. Over the lifetime, 1513 publications have been published within this topic receiving 194833 citations.


Papers
More filters
Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

15,374 citations

Journal ArticleDOI
24 May 2001-Nature
TL;DR: 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.
Abstract: RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. The mediators of sequence-specific messenger RNA degradation are 21- and 22-nucleotide small interfering RNAs (siRNAs) generated by ribonuclease III cleavage from longer dsRNAs. Here we show that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells. Therefore, 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.

10,451 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that 21 and 22-nt RNA fragments are the sequence-specific mediators of RNA interference in a Drosophila in vitro system, and provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Abstract: Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III–like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3 ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA–protein complex.

3,980 citations

Journal ArticleDOI
16 Mar 2000-Nature
TL;DR: It is shown that ‘loss-of-function’ phenotypes can be created in cultured Drosophila cells by transfection with specific double-stranded RNAs, which coincides with a marked reduction in the level of cognate cellular messenger RNAs.
Abstract: In a diverse group of organisms that includes Caenorhabditis elegans, Drosophila, planaria, hydra, trypanosomes, fungi and plants, the introduction of double-stranded RNAs inhibits gene expression in a sequence-specific manner. These responses, called RNA interference or post-transcriptional gene silencing, may provide anti-viral defence, modulate transposition or regulate gene expression. We have taken a biochemical approach towards elucidating the mechanisms underlying this genetic phenomenon. Here we show that 'loss-of-function' phenotypes can be created in cultured Drosophila cells by transfection with specific double-stranded RNAs. This coincides with a marked reduction in the level of cognate cellular messenger RNAs. Extracts of transfected cells contain a nuclease activity that specifically degrades exogenous transcripts homologous to transfected double-stranded RNA. This enzyme contains an essential RNA component. After partial purification, the sequence-specific nuclease co-fractionates with a discrete, approximately 25-nucleotide RNA species which may confer specificity to the enzyme through homology to the substrate mRNAs.

3,208 citations

Journal ArticleDOI
29 Oct 1999-Science
TL;DR: The 25-nucleotide antisense RNA detected in transgene-induced PTGS is likely synthesized from an RNA template and may represent the specificity determinant of PTGS.
Abstract: Posttranscriptional gene silencing (PTGS) is a nucleotide sequence-specific defense mechanism that can target both cellular and viral mRNAs. Here, three types of transgene-induced PTGS and one example of virus-induced PTGS were analyzed in plants. In each case, antisense RNA complementary to the targeted mRNA was detected. These RNA molecules were of a uniform length, estimated at 25 nucleotides, and their accumulation required either transgene sense transcription or RNA virus replication. Thus, the 25-nucleotide antisense RNA is likely synthesized from an RNA template and may represent the specificity determinant of PTGS.

3,202 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
81% related
Gene expression
113.3K papers, 5.5M citations
77% related
Regulation of gene expression
85.4K papers, 5.8M citations
76% related
Transcription factor
82.8K papers, 5.4M citations
76% related
Peptide sequence
84.1K papers, 4.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202221
20184
201752
201667
201559