scispace - formally typeset
Search or ask a question

Showing papers on "Robot published in 2004"


Book
05 Mar 2004
TL;DR: Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners.
Abstract: Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques.] This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners.

2,414 citations


MonographDOI
01 Mar 2004
TL;DR: This book describes the basic concepts and methodologies of evolutionary robotics and the results achieved so far, and describes the clear presentation of a set of empirical experiments of increasing complexity.
Abstract: Evolutionary robotics is a new technique for the automatic creation of autonomous robots. Inspired by the Darwinian principle of selective reproduction of the fittest, it views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention. Drawing heavily on biology and ethology, it uses the tools of neural networks, genetic algorithms, dynamic systems, and biomorphic engineering. The resulting robots share with simple biological systems the characteristics of robustness, simplicity, small size, flexibility, and modularity. In evolutionary robotics, an initial population of artificial chromosomes, each encoding the control system of a robot, is randomly created and put into the environment. Each robot is then free to act (move, look around, manipulate) according to its genetically specified controller while its performance on various tasks is automatically evaluated. The fittest robots then "reproduce" by swapping parts of their genetic material with small random mutations. The process is repeated until the "birth" of a robot that satisfies the performance criteria. This book describes the basic concepts and methodologies of evolutionary robotics and the results achieved so far. An important feature is the clear presentation of a set of empirical experiments of increasing complexity. Software with a graphic interface, freely available on a Web page, will allow the reader to replicate and vary (in simulation and on real robots) most of the experiments.

1,084 citations


Journal ArticleDOI
TL;DR: Webots™ lets you define and modify a complete mobile robotics setup, even several different robots sharing the same environment, and enable you to transfer your control programs to several commercially available real mobile robots.
Abstract: Cyberbotics Ltd. develops Webots™, a mobile robotics simulation software that provides you with a rapid prototyping environment for modelling, programming and simulating mobile robots. The provided robot libraries enable you to transfer your control programs to several commercially available real mobile robots. Webots™ lets you define and modify a complete mobile robotics setup, even several different robots sharing the same environment. For each object, you can define a number of properties, such as shape, color, texture, mass, friction, etc. You can equip each robot with a large number of available sensors and actuators. You can program these robots using your favorite development environment, simulate them and optionally transfer the resulting programs onto your real robots. Webots™ has been developed in collaboration with the Swiss Federal Institute of Technology in Lausanne, thoroughly tested, well documented and continuously maintained for over 7 years. It is now the main commercial product availabl...

1,062 citations


Book ChapterDOI
17 Jul 2004
TL;DR: This paper proposes a definition to this newly emerging approach to swarm robotics, describing the desirable properties of swarm robotic systems, as observed in the system-level functioning of social insects, and proposing a definition for the term swarm robotics.
Abstract: Swarm robotics is a novel approach to the coordination of large numbers of relatively simple robots which takes its inspiration from social insects. This paper proposes a definition to this newly emerging approach by 1) describing the desirable properties of swarm robotic systems, as observed in the system-level functioning of social insects, 2) proposing a definition for the term swarm robotics, and putting forward a set of criteria that can be used to distinguish swarm robotics research from other multi-robot studies, 3) providing a review of some studies which can act as sources of inspiration, and a list of promising domains for the utilization of swarm robotic systems.

905 citations


Proceedings ArticleDOI
07 Jun 2004
TL;DR: The approach that the lab has taken to micro VTOL evolving towards full autonomy is described, and the mechanical design, dynamic modelling, sensing, and control of the indoor VTOL autonomous robot OS4 are presented.
Abstract: Progresses in sensor technology, data processing and integrated actuators has made the development of miniature flying robots fully possible. Micro VTOL systems represent a useful class of flying robots because of their strong capabilities for small-area monitoring and building exploration. In this paper we describe the approach that our lab has taken to micro VTOL evolving towards full autonomy, and present the mechanical design, dynamic modelling, sensing, and control of our indoor VTOL autonomous robot OS4.

831 citations


Proceedings ArticleDOI
06 Jul 2004
TL;DR: A probabilistic measurement model for RFID readers that allow us to accurately localize RFID tags in the environment and demonstrates how such maps can be used to localize a robot and persons in their environment.
Abstract: We analyze whether radio frequency identification (RFID) technology can be used to improve the localization of mobile robots and persons in their environment. In particular we study the problem of localizing RFID tags with a mobile platform that is equipped with a pair of RFID antennas. We present a probabilistic measurement model for RFID readers that allow us to accurately localize RFID tags in the environment. We also demonstrate how such maps can be used to localize a robot and persons in their environment. Finally, we present experiments illustrating that the computational requirements for global robot localization can be reduced strongly by fusing RFID information with laser data.

770 citations


Proceedings ArticleDOI
06 Jul 2004
TL;DR: A machine learning approach to optimizing a quadrupedal trot gait for forward speed using a form of policy gradient reinforcement learning to automatically search the set of possible parameters with the goal of finding the fastest possible walk.
Abstract: This paper presents a machine learning approach to optimizing a quadrupedal trot gait for forward speed. Given a parameterized walk designed for a specific robot, we propose using a form of policy gradient reinforcement learning to automatically search the set of possible parameters with the goal of finding the fastest possible walk. We implement and test our approach on a commercially available quadrupedal robot platform, namely the Sony Aibo robot. After about three hours of learning, all on the physical robots and with no human intervention other than to change the batteries, the robots achieved a gait faster than any previously known gait known for the Aibo, significantly outperforming a variety of existing hand-coded and learned solutions.

621 citations


Journal ArticleDOI
01 May 2004
TL;DR: The article presents a synopsis of the major HRI issues in reducing the number of humans it takes to control a robot, maintaining performance with geographically distributed teams with intermittent communications, and encouraging acceptance within the existing social structure.
Abstract: Rescue robotics has been suggested by a recent DARPA/NSF study as an application domain for the research in human-robot integration (HRI). This paper provides a short tutorial on how robots are currently used in urban search and rescue (USAR) and discusses the HRI issues encountered over the past eight years. A domain theory of the search activity is formulated. The domain theory consists of two parts: 1) a workflow model identifying the major tasks, actions, and roles in robot-assisted search (e.g., a workflow model) and 2) a general information flow model of how data from the robot is fused by various team members into information and knowledge. The information flow model also captures the types of situation awareness needed by each agent in the rescue robot system. The article presents a synopsis of the major HRI issues in reducing the number of humans it takes to control a robot, maintaining performance with geographically distributed teams with intermittent communications, and encouraging acceptance within the existing social structure.

593 citations



Journal ArticleDOI
TL;DR: A new actuation concept for human-friendly robot design is presented, referred to as DM/sup 2, which substantially reduces the impact loads associated with uncontrolled manipulator collision by relocating the major source of actuation effort from the joint to the base of the manipulator.
Abstract: We have presented a new actuation concept for human-friendly robot design, referred to as DM/sup 2/. The new concept of DM/sup 2/ was demonstrated on a two-degree-of-freedom prototype robot arm that we designed and built to validate our approach. The new actuation approach substantially reduces the impact loads associated with uncontrolled manipulator collision by relocating the major source of actuation effort from the joint to the base of the manipulator. The emerging field of human-centered robotics focuses on application such as medical robotics and service robotics, which require close interaction between robotic manipulation systems and human beings, including direct human-manipulator contact. As a result, this system must consider the requirements of safety. To achieve safety we must employ multiple strategies involving all aspects of manipulator design.

430 citations


Journal ArticleDOI
01 Feb 2004
TL;DR: A novel neural network approach is proposed for complete coverage path planning with obstacle avoidance of cleaning robots in nonstationary environments and results show that the proposed model is capable of planning collision-free complete coverage robot paths.
Abstract: Complete coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots, painter robots, land mine detectors, lawn mowers, automated harvesters, and window cleaners. In this paper, a novel neural network approach is proposed for complete coverage path planning with obstacle avoidance of cleaning robots in nonstationary environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's (1952) membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location. The proposed model algorithm is computationally simple. Simulation results show that the proposed model is capable of planning collision-free complete coverage robot paths.

Journal ArticleDOI
TL;DR: The results suggest that humanoid robots may be appropriate for settings in which people have to delegate responsibility to these robots or when the task is too demanding for people to do, and when complacency is not a major concern.
Abstract: The use of autonomous, mobile professional service robots in diverse workplaces is expected to grow substantially over the next decade. These robots often will work side by side with people, collaborating with employees on tasks. Some roboticists have argued that, in these cases, people will collaborate more naturally and easily with humanoid robots as compared with machine-like robots. It is also speculated that people will rely on and share responsibility more readily with robots that are in a position of authority. This study sought to clarify the effects of robot appearance and relative status on human-robot collaboration by investigating the extent to which people relied on and ceded responsibility to a robot coworker. In this study, a 3 × 3 experiment was conducted with human likeness (human, human-like robot, and machine-like robot) and status (subordinate, peer, and supervisor) as dimensions. As far as we know, this study is one of the first experiments examining how people respond to robotic coworkers. As such, this study attempts to design a robust and transferable sorting and assembly task that capitalizes on the types of tasks robots are expected to do and is embedded in a realistic scenario in which the participant and confederate are interdependent. The results show that participants retained more responsibility for the successful completion of the task when working with a machine-like as compared with a humanoid robot, especially when the machine-like robot was subordinate. These findings suggest that humanoid robots may be appropriate for settings in which people have to delegate responsibility to these robots or when the task is too demanding for people to do, and when complacency is not a major concern. Machine-like robots, however, may be more appropriate when robots are expected to be unreliable, are less well-equipped for the task than people are, or in other situations in which personal responsibility should be emphasized.

Journal ArticleDOI
TL;DR: A new robotic concept called swarm-bot is introduced in which the collective interaction exploited by the swarm intelligence mechanism goes beyond the control layer and is extended to the physical level, which implies the addition of new mechanical functionalities on the single robot, together with new electronics and software to manage it.
Abstract: The swarm intelligence paradigm has proven to have very interesting properties such as robustness, flexibility and ability to solve complex problems exploiting parallelism and self-organization. Several robotics implementations of this paradigm confirm that these properties can be exploited for the control of a population of physically independent mobile robots. The work presented here introduces a new robotic concept called swarm-bot in which the collective interaction exploited by the swarm intelligence mechanism goes beyond the control layer and is extended to the physical level. This implies the addition of new mechanical functionalities on the single robot, together with new electronics and software to manage it. These new functionalities, even if not directly related to mobility and navigation, allow to address complex mobile robotics problems, such as extreme all-terrain exploration. The work shows also how this new concept is investigated using a simulation tool (swarmbot3d) specifically developed for quickly designing and evaluating new control algorithms. Experimental work shows how the simulated detailed representation of one s-bot has been calibrated to match the behaviour of the real robot.

Journal ArticleDOI
TL;DR: This paper focuses on planar fully actuated robots and proposes an abstraction based on the definition of a map from the configuration space Q of the robots to a lower dimensional manifold A, whose dimension is independent of the number of robots.
Abstract: This paper addresses the general problem of controlling a large number of robots required to move as a group. We propose an abstraction based on the definition of a map from the configuration space Q of the robots to a lower dimensional manifold A, whose dimension is independent of the number of robots. In this paper, we focus on planar fully actuated robots. We require that the manifold A has a product structure A=G/spl times/S, where G is a Lie group, which captures the position and orientation of the ensemble in the chosen world coordinate frame, and S is a shape manifold, which is an intrinsic characterization of the team describing the "shape" as the area spanned by the robots. We design decoupled controllers for the group and shape variables. We derive controllers for individual robots that guarantee the desired behavior on A. These controllers can be realized by feedback that depends only on the current state of the robot and the state of the manifold A. This has the practical advantage of reducing the communication and sensing that is required and limiting the complexity of individual robot controllers, even for large numbers of robots.

Proceedings ArticleDOI
20 Sep 2004
TL;DR: A definition of social robots is proposed and a framework that classifies properties of social Robots is described, which consist of form, modality, social norms, autonomy, and interactivity.
Abstract: Robots currently integrate into our everyday lives, but little is known about how they can act socially. In this paper, we propose a definition of social robots and describe a framework that classifies properties of social robots. The properties consist of form, modality, social norms, autonomy, and interactivity. Finally, we provide broad guidelines for the design of social robots.

Journal ArticleDOI
TL;DR: Two demonstrator platforms for a robotic home assistant—called Care-O-bot—were designed and implemented at Fraunhofer IPA, Stuttgart and a new method for sensor based manipulation using a tilting laser scanner and camera integrated in the head of the robot has been implemented.
Abstract: Technical aids allow elderly and handicapped people to live independently and supported in their private homes for a longer time. As a contribution to such technological solutions, two demonstrator platforms for a robotic home assistant—called Care-O-bot—were designed and implemented at Fraunhofer IPA, Stuttgart. Whereas Care-O-bot I is only a mobile platform with a touch screen, Care-O-bot II is additionally equipped with adjustable walking supporters and a manipulator arm. It has the capability to navigate autonomously in indoor environments, be used as an intelligent walking support, and execute manipulation tasks. The control software of Care-O-bot II runs on two industrial PCs and a hand-held control panel. The walking aid module is based on sensors in the walking aid handles and on a dynamic model of conventional walking aids. In “direct mode”, the user can move along freely with the robot whereas obstacles are detected and avoided. In “planned mode”, he can specify a target and be lead there by the robotic assistant. Autonomous planning and execution of complex manipulation tasks is based on a symbolic planner and environmental information provided in a database. The user input (graphical and speech input) is transferred to the task planner and adequate actions to solve the task (sequence of motion and manipulation commands) are created. A new method for sensor based manipulation using a tilting laser scanner and camera integrated in the head of the robot has been implemented. Additional sensors in the robot hand increase the grasping capabilities. The walking aid has been tested with elderly users from an assisted living facility and a nursery home. Furthermore, the execution of fetch and carry tasks has been implemented and tested in a sample home environment.

Proceedings ArticleDOI
13 Jan 2004
TL;DR: A study of human subjects with a robot designed to mimic human conversational gaze behavior in collaborative conversation offers some conclusions based on the study about the importance of engagement for 3D IUIs.
Abstract: This paper reports on a study of human subjects with a robot designed to mimic human conversational gaze behavior in collaborative conversation. The robot and the human subject together performed a demonstration of an invention created at our laboratory; the demonstration lasted 3 to 3.5 minutes. We briefly discuss the robot architecture and then focus the paper on a study of the effects of the robot operating in two different conditions. We offer some conclusions based on the study about the importance of engagement for 3D IUIs. We will present video clips of the subject interactions with the robot at the conference.

Journal ArticleDOI
TL;DR: An approach for teaching a humanoid robot is presented that will enable the robot to learn typical tasks required in everyday household environments and the main focus is on the knowledge representation in order to be able to abstract the problem solution strategies and to transfer them onto the robot system.

Journal ArticleDOI
TL;DR: An efficient algorithm based on interval analysis that allows us to solve the forward kinematics, i.e., to determine all the possible poses of the platform for given joint coordinates, which is competitive in term of computation time with a real-time algorithm such as the Newton scheme, while being safer.
Abstract: We consider in this paper a Gough-type parallel robot and we present an efficient algorithm based on interval analysis that allows us to solve the forward kinematics, i.e., to determine all the possible poses of the platform for given joint coordinates. This algorithm is numerically robust as numerical round-off errors are taken into account; the provided solutions are either exact in the sense that it will be possible to refine them up to an arbitrary accuracy or they are flagged only as a “possible” solution as either the numerical accuracy of the computation does not allow us to guarantee them or the robot is in a singular configuration. It allows us to take into account physical and technological constraints on the robot (for example, limited motion of the passive joints). Another advantage is that, assuming realistic constraints on the velocity of the robot, it is competitive in term of computation time with a real-time algorithm such as the Newton scheme, while being safer.

Proceedings ArticleDOI
28 Sep 2004
TL;DR: This paper demonstrates the differences between a robot and an animated character in terms a person's engagement and perceptions of the robot and character and Implications to the design of socially communicative and interactive robots are discussed.
Abstract: Social robots are robots that help people as capable partners rather than as tools, are believed to be of greatest use for applications in entertainment, education, and healthcare because of their potential to be perceived as trusting, helpful, reliable, and engaging. This paper explores how the robot's physical presence influences a person's perception of these characteristics. The first study reported here demonstrates the differences between a robot and an animated character in terms a person's engagement and perceptions of the robot and character. The second study shows that this difference is a result of the physical presence of the robot and that a person's reactions would be similar even if the robot is not physically collocated. Implications to the design of socially communicative and interactive robots are discussed.

Journal ArticleDOI
TL;DR: This note gives a qualitative analysis of the dynamics of a system consisting of several mobile robots coordinating their motion using simple local nearest neighbor rules and shows that under some assumptions the headings of all robots will be eventually constant.
Abstract: This note gives a qualitative analysis of the dynamics of a system consisting of several mobile robots coordinating their motion using simple local nearest neighbor rules. We show that under some assumptions the headings of all robots will be eventually constant.

Proceedings ArticleDOI
06 Jul 2004
TL;DR: An algorithm based on processing of radio signal strength data was developed so the robot could successfully decide which node neighborhood it belonged to, and extensive experiments confirm the validity of the approach.
Abstract: We describe an algorithm for robot navigation using a sensor network embedded in the environment. Sensor nodes act as signposts for the robot to follow, thus obviating the need for a map or localization on the part of the robot. Navigation directions are computed within the network (not on the robot) using value iteration. Using small low-power radios, the robot communicates with nodes in the network locally, and makes navigation decisions based on which node it is near. An algorithm based on processing of radio signal strength data was developed so the robot could successfully decide which node neighborhood it belonged to. Extensive experiments with a robot and a sensor network confirm the validity of the approach.

Book
01 May 2004
TL;DR: In this paper, the authors present an approach for the design of two-finger grippers with respect to the acceleration and acceleration properties of the gripper mechanism and the acceleration of the grasp.
Abstract: Preface 1: Introduction to Automation and Robotics 1.1 Automatic systems and robots 1.2 Evolution and applications of robots 1.3 Examples and technical characteristics of industrial robots 1.4 Evaluation of a robotization 1.4.1 An economic estimation 1.5 Forum for discussions on Robotics 2: Analysis of Manipulations 2.1 Decomposition of manipulative actions 2.2 A procedure for analyzing manipulation tasks 2.3 Programming for robots 2.3.1 A programming language for robots: VAL II 2.3.2 A programming language for robots: ACL 2.4 Illustrative examples 2.4.1 Education practices 2.4.1.1 Simulation of an industrial process 2.4.1.2 Writing with a robot 2.4.1.3 An intelligent packing 2.4.2 Industrial applications 2.4.2.1 Designing a robotized manipulation 2.4.2.2 Optimizing a robotized manipulation 3: Fundamentals of Mechanics of Manipulators 3.1 Kinematic model and position analysis 3.1.1 Transformation Matrix 3.1.2 Joint variables and actuator space 3.1.3 Workspace analysis 3.1.3.1 A binary matrix formulation 3.1.3.2 An algebraic formulation 3.1.3.3 A Workspace evaluation 3.1.4 Manipulator design with prescribed workspace 3.2 Inverse kinematics and path planning 3.2.1 A formulation for inverse kinematics 3.2.1.1 An example 3.2.2 Trajectory generation in Joint Space 3.2.3 A formulation for path planning in Cartesian coordinates 3.2.3.1 Illustrative examples 3.3 Velocity and acceleration analysis 3.3.1 An example 3.4 Jacobian and singularity configurations 3.4.1 An example 3.5 Statics of manipulators 3.5.1A mechanical model 3.5.2 Equations of equilibrium 3.5.3 Jacobian mapping of forces 3.5.4 An example 3.6 Dynamics of manipulators 3.6.1 Mechanical model and inertia characteristics 3.6.2 Newton-Euler equations 3.6.2.1 An example 3.6.3 Lagrange formulation 3.6.3.1An example 3.7 Stiffness of manipulators 3.7.1 A mechanical model 3.7.2 A formulation for stiffness analysis 3.7.3 A numerical example 3.8 Performance criteria for manipulators 3.8.1 Accuracy and repeatability 3.8.2 Dynamic characteristics 3.8.3 Compliance response 3.9 Fundamentals of Mechanics of parallel manipulators 3.9.1 A numerical example for CaPaMan (Cassino Parallel Manipulator) 4: Fundamentals of Mechanics of Grasp 4.1 Gripping devices and their characteristics 4.2 A mechatronic analysis for two-finger grippers 4.3 Design parameters and operation requirements for grippers 4.4 Configurations and phases of two-finger grasp 4.5 Model and analysis of two-finger grasp 4.6 Mechanisms for grippers 4.6.1 Modeling gripper mechanisms 4.6.2 An evaluation of gripping mechanisms 4.6.2.1 A numerical example of index evaluation 4.7 Designing two-finger grippers 4.7.1 An optimum design procedure for gripping mechanisms 4.7.1.1 A numerical example of optimum design 4.8 Electropneumatic actuation and grasping force control 4.8.1 An illustrative example for laboratory practice 4.8.1.1 An acceleration sensored gripper 4.9 Fundamentals on multifinger grasp and articulated fingers Bibliography Index Biographical Notes

Journal ArticleDOI
TL;DR: Results show that models can deliver both qualitatively and quantitatively correct predictions in time lapses that are at least four orders of magnitude smaller than those required by embodied simulations and that they represent a useful tool for generalizing the dynamics of these highly stochastic, asynchronous, nonlinear systems.
Abstract: In this paper, we present a time-discrete, incremental methodology for modeling, at the microscopic and macroscopic level, the dynamics of distributed manipulation experiments using swarms of autonomous robots endowed with reactive controllers. The methodology is well-suited for nonspatial metrics since it does not take into account robots’ trajectories or the spatial distribution of objects in the environment. The strength of the methodology lies in the fact that it has been generated by considering incremental abstraction steps, from real robots to macroscopic models, each with well-defined mappings between successive implementation levels. Precise heuristic criteria based on geometrical considerations and systematic tests with one or two real robots prevent the introduction of free parameters in the calibration procedure of models. As a consequence, we are able to generate highly abstracted macroscopic models that can capture the dynamics of a swarm of robots at the behavioral level while still being closely anchored to the characteristics of the physical set-up. Although this methodology has been and can be applied to other experiments in distributed manipulation (e.g., object aggregation and segregation, foraging), in this paper we focus on a strictly collaborative case study concerned with pulling sticks out of the ground, an action that requires the collaboration of two robots to be successful. Experiments were carried out with teams consisting of two to 600 individuals at different levels of implementation (real robots, embodied simulations, microscopic and macroscopic models). Results show that models can deliver both qualitatively and quantitatively correct predictions in time lapses that are at least four orders of magnitude smaller than those required by embodied simulations and that they represent a useful tool for generalizing the dynamics of these highly stochastic, asynchronous, nonlinear systems, often outperforming intuitive reasoning. Finally, in addition to discussing subtle numerical effects, small prediction discrepancies, and difficulties in generating the mapping between different abstractions levels, we conclude the paper by reviewing the intrinsic limitations of the current modeling methodology and by proposing a few suggestions for future work.

Journal ArticleDOI
TL;DR: An overview of the use of robots for USAR is provided, concentrating on what robots were actually used and why, and the roles that the robots played in the response and the impact of the physical environment on the platforms.
Abstract: On September 11, 2001, the Center for Robot-Assisted Search and Rescue (CRASAR) responded within six hours to the World Trade Center (WTC) disaster; this is the first known use of robots for urban search and rescue (USAR). The University of South Florida (USF) was one of the four robot teams, and the only academic institution represented. The USF team participated onsite in the search efforts from 12-21 September 2001, collecting and archiving data on the use of all robots, in addition to actively fielding robots. This article provides an overview of the use of robots for USAR, concentrating on what robots were actually used and why. It describes the roles that the robots played in the response and the impact of the physical environment on the platforms. The quantitative and qualitative performance of the robots are summarized in terms of their components (mobility, sensors, control, communications, and power) and within the larger human-robot system. Lessons learned are offered and a synopsis of the current state of rescue robotics and activities at the CRASAR concludes the article.

Journal ArticleDOI
TL;DR: The design and implementation of a vision-based system for cooperative manipulation at millimeter to micrometer scales based on an admittance control algorithm that implements a broad class of guidance modes called virtual fixtures is presented.
Abstract: We present the design and implementation of a vision-based system for cooperative manipulation at millimeter to micrometer scales. The system is based on an admittance control algorithm that implements a broad class of guidance modes called virtual fixtures. A virtual fixture, like a real fixture, limits the motion of a tool to a prescribed class or range of motions. We describe how both hard (unyielding) and soft (yielding) virtual fixtures can be implemented in this control framework. We then detail the construction of virtual fixtures for point positioning and curve following as well as extensions of these to tubes, cones, and sequences thereof. We also describe an implemented system using the JHU Steady Hand Robot. The system uses computer vision as a sensor for providing a reference trajectory, and the virtual fixture control algorithm then provides haptic feedback to implemented direct, shared manipulation. We provide extensive experimental results detailing both system performance and the effects of virtual fixtures on human speed and accuracy.

Proceedings ArticleDOI
28 Sep 2004
TL;DR: This work presents a learning system which is able to quickly and reliably acquire a robust feedback control policy for 3D dynamic walking from a blank-slate using only trials implemented on the physical robot.
Abstract: We present a learning system which is able to quickly and reliably acquire a robust feedback control policy for 3D dynamic walking from a blank-slate using only trials implemented on our physical robot. The robot begins walking within a minute and learning converges in approximately 20 minutes. This success can be attributed to the mechanics of our robot, which are modeled after a passive dynamic walker, and to a dramatic reduction in the dimensionality of the learning problem. We reduce the dimensionality by designing a robot with only 6 internal degrees of freedom and 4 actuators, by decomposing the control system in the frontal and sagittal planes, and by formulating the learning problem on the discrete return map dynamics. We apply a stochastic policy gradient algorithm to this reduced problem and decrease the variance of the update using a state-based estimate of the expected cost. This optimized learning system works quickly enough that the robot is able to continually adapt to the terrain as it walks.

Patent
06 Aug 2004
TL;DR: In this article, a method for automatically operating a robot, attached to a lawnmower or other unmanned machine, within an enclosed area is disclosed, which includes the following elements: a proximity sensor positioned on the robot, a boundary along the perimeter of the working area, a processing unit connected to the proximity sensor and receiving an input therefrom, a direction finder, and a memory to store values generated by the processing unit; and causing the robot to move along each of the boundaries provided around or within the working areas, to detect the boundaries and to memorize their shape
Abstract: A method for automatically operating a robot, attached to a lawnmower or other unmanned machine, within an enclosed area is disclosed. The method includes the steps of: 1) providing the following elements: a proximity sensor positioned on the robot, a boundary along the perimeter of the working area and along the perimeter of each area enclosed in the working area in which the robot should not operate, the boundaries being detectable by the proximity sensor, a processing unit connected to the proximity sensor and receiving an input therefrom, a navigation unit on the robot to determine the coordinates of the robot relative to an arbitrary origin, a direction finder, and a memory to store values generated by the processing unit; and 2) causing the robot to move along each of the boundaries provided around or within the working area, to detect the boundaries and to memorize their shape, and to store in the memory values representative of the coordinates of the boundaries, thereby to generate a basic map of the working area. When the robot is to operate within the area, the method includes the steps of: (a) causing the robot to start from a starting point having known coordinates within the basic map of the working area; (b) continuously determining the coordinates of the robot by analyzing data obtained from the navigation unit and by detecting the vicinity of a boundary; and (c) correcting the actual position of the robot on the basic map by comparing the calculated and the actual coordinates of each detected boundary.

Journal ArticleDOI
25 Oct 2004
TL;DR: A humanoid robot that autonomously interacts with humans by speaking and gesturing is developed that communicates with humans and is designed to participate in human society as a partner and suggests a new analytical approach to human-robot interaction.
Abstract: We report the development and evaluation of a new interactive humanoid robot that communicates with humans and is designed to participate in human society as a partner. A human-like body will provide an abundance of nonverbal information and enable us to smoothly communicate with the robot. To achieve this, we developed a humanoid robot that autonomously interacts with humans by speaking and gesturing. Interaction achieved through a large number of interactive behaviors, which are developed by using a visualizing tool for understanding the developed complex system. Each interactive behavior is designed by using knowledge obtained through cognitive experiments and implemented by using situated recognition. The robot is used as a testbed for studying embodied communication. Our strategy is to analyze human-robot interaction in terms of body movements using a motion-capturing system that allows us to measure the body movements in detail. We performed experiments to compare the body movements with subjective evaluation based on a psychological method. The results reveal the importance of well-coordinated behaviors as well as the performance of the developed interactive behaviors and suggest a new analytical approach to human-robot interaction.

Book ChapterDOI
TL;DR: OpenHRP is expected to initiate the exploration of humanoid robotics on an open architecture software and hardware, thanks to the unification of the controllers and the examined consistency between the simulator and a real humanoid robot.
Abstract: This paper introduces an open architecture humanoid robotics platform (OpenHRP for short) on which various building blocks of humanoid robotics can be investigated. OpenHRP is a virtual humanoid robot platform with a compatible humanoid robot, and consists of a simulator of humanoid robots and motion control library for them which can also be applied to a compatible humanoid robot as it is. OpenHRP also has a view simulator of humanoid robots on which humanoid robot vision can be studied. The consistency between the simulator and the robot are enhanced by introducing a new algorithm to simulate repulsive force and torque between contacting objects. OpenHRP is expected to initiate the exploration of humanoid robotics on an open architecture software and hardware, thanks to the unification of the controllers and the examined consistency between the simulator and a real humanoid robot.