scispace - formally typeset
Search or ask a question

Showing papers on "Robot published in 2009"


Book
24 Aug 2009
TL;DR: Programming by demonstration (PbD) as discussed by the authors is a technique for teaching new skills to a robot by imitation, tutelage, or apprenticeship learning through human guidance.
Abstract: Also referred to as learning by imitation, tutelage, or apprenticeship learning, Programming by Demonstration (PbD) develops methods by which new skills can be transmitted to a robot. This book examines methods by which robots learn new skills through human guidance. Taking a practical perspective, it covers a broad range of applications, including service robots. The text addresses the challenges involved in investigating methods by which PbD is used to provide robots with a generic and adaptive model of control. Drawing on findings from robot control, human-robot interaction, applied machine learning, artificial intelligence, and developmental and cognitive psychology, the book contains a large set of didactic and illustrative examples. Practical and comprehensive machine learning source codes are available on the books companion website: http://www.programming-by-demonstration.org

1,071 citations


01 Jan 2009
TL;DR: In this paper, the e-puck robot design is presented, which specifically targets engineering education at university level and can be used in a large spectrum of teaching activities, not strictly related to robotics.
Abstract: Mobile robots have the potential to become the ideal tool to teach a broad range of engineering disciplines. Indeed, mobile robots are getting increasingly complex and accessible. They embed elements from diverse fields such as mechanics, digital electronics, automatic control, signal processing, embedded programming, and energy management. Moreover, they are attractive for students which increases their motivation to learn. However, the requirements of an effective education tool bring new constraints to robotics. This article presents the e-puck robot design, which specifically targets engineering education at university level. Thanks to its particular design, the e-puck can be used in a large spectrum of teaching activities, not strictly related to robotics. Through a systematic evaluation by the students, we show that the e-puck fits this purpose and is appreciated by 90 percent of a large sample of students.

823 citations


Journal ArticleDOI
TL;DR: The state of the art in the design of actuators with adaptable passive compliance is described, which is not preferred for classical position-controlled applications such as pick and place operations but is preferred in novel robots where safe human- robot interaction is required or in applications where energy efficiency must be increased by adapting the actuator's resonance frequency.
Abstract: In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking k robots, variable stiffness actuators (VSAs) or adjustable compliant actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user, and their ability to store and release energy in passive elastic elements. This review article describes the state of the art in the design of actuators with adaptable passive compliance. This new type of actuator is not preferred for classical position-controlled applications such as pick and place operations but is preferred in novel robots where safe human- robot interaction is required or in applications where energy efficiency must be increased by adapting the actuator's resonance frequency. The working principles of the different existing designs are explained and compared. The designs are divided into four groups: equilibrium-controlled stiffness, antagonistic-controlled stiffness, structure-controlled stiffness (SCS), and mechanically controlled stiffness.

772 citations


Journal ArticleDOI
TL;DR: A framework to automatically generate a hybrid controller that guarantees that the robot can achieve its task when a robot model, a class of admissible environments, and a high-level task or behavior for the robot are provided.
Abstract: This paper provides a framework to automatically generate a hybrid controller that guarantees that the robot can achieve its task when a robot model, a class of admissible environments, and a high-level task or behavior for the robot are provided. The desired task specifications, which are expressed in a fragment of linear temporal logic (LTL), can capture complex robot behaviors such as search and rescue, coverage, and collision avoidance. In addition, our framework explicitly captures sensor specifications that depend on the environment with which the robot is interacting, which results in a novel paradigm for sensor-based temporal-logic-motion planning. As one robot is part of the environment of another robot, our sensor-based framework very naturally captures multirobot specifications in a decentralized manner. Our computational approach is based on first creating discrete controllers satisfying specific LTL formulas. If feasible, the discrete controller is then used to guide the sensor-based composition of continuous controllers, which results in a hybrid controller satisfying the high-level specification but only if the environment is admissible.

717 citations


Journal ArticleDOI
TL;DR: In this article, a survey about forms of human-machine cooperation in assembly and available technologies that support the cooperation is presented, including organizational and economic aspects of cooperative assembly including efficient component supply and logistics.

667 citations


Patent
31 Aug 2009
TL;DR: In this paper, a remote controlled robot with a head that supports a monitor and is coupled to a mobile platform is described, where an auxiliary camera coupled to the mobile platform by a boom is connected to a robot head.
Abstract: A remote controlled robot with a head that supports a monitor and is coupled to a mobile platform. The mobile robot also includes an auxiliary camera coupled to the mobile platform by a boom. The mobile robot is controlled by a remote control station. By way of example, the robot can be remotely moved about an operating room. The auxiliary camera extends from the boom so that it provides a relatively close view of a patient or other item in the room. An assistant in the operating room may move the boom and the camera. The boom may be connected to a robot head that can be remotely moved by the remote control station.

567 citations


Proceedings ArticleDOI
12 May 2009
TL;DR: The mechatronic design of the autonomous humanoid robot called NAO that is built by the French company Aldebaran-Robotics is presented, which has been designed to be affordable without sacrificing quality and performance.
Abstract: This article presents the mechatronic design of the autonomous humanoid robot called NAO that is built by the French company Aldebaran-Robotics. With its height of 0.57 m and its weight about 4.5 kg, this innovative robot is lightweight and compact. It distinguishes itself from existing humanoids thanks to its pelvis kinematics design, its proprietary actuation system based on brush DC motors, its electronic, computer and distributed software architectures. This robot has been designed to be affordable without sacrificing quality and performance. It is an open and easy-to-handle platform. The comprehensive and functional design is one of the reasons that helped select NAO to replace the AIBO quadrupeds in the 2008 RoboCup standard league.

532 citations


01 Jan 2009
TL;DR: A pilot development of a robot ‘task programming method’ where PbD is applied on a robotic arm with two degrees offreedom for programming a constrained motion task.
Abstract: The presented paper shows a pilot development of a robot ‘task programming method’. In this method, the user programs the robot task by demonstrating it (Programming by Demonstration, PbD). PbD is applied on a robotic arm with two degrees-of-freedom for programming a constrained motion task.

518 citations


Proceedings ArticleDOI
10 Oct 2009
TL;DR: A novel approach for determining robot movements that efficiently accomplish the robot's tasks while not hindering the movements of people within the environment is presented and improvement in hindrance-sensitive robot trajectory planning is quantitatively shown.
Abstract: We present a novel approach for determining robot movements that efficiently accomplish the robot's tasks while not hindering the movements of people within the environment. Our approach models the goal-directed trajectories of pedestrians using maximum entropy inverse optimal control. The advantage of this modeling approach is the generality of its learned cost function to changes in the environment and to entirely different environments. We employ the predictions of this model of pedestrian trajectories in a novel incremental planner and quantitatively show the improvement in hindrance-sensitive robot trajectory planning provided by our approach.

490 citations


Book
16 Mar 2009
TL;DR: In this article, the problem of planning motion laws and trajectories for the actuation system of automatic machines, in particular for those based on electric drives, and robots, is discussed.
Abstract: This book deals with the problems related to planning motion laws and trajectories for the actuation system of automatic machines, in particular for those based on electric drives, and robots. The problem of planning suitable trajectories is relevant not only for the proper use of these machines, in order to avoid undesired effects such as vibrations or even damages on the mechanical structure, but also in some phases of their design and in the choice and sizing of the actuators. This is particularly true now that the concept of electronic cams has replaced, in the design of automatic machines, the classical approach based on mechanical cams. The choice of a particular trajectory has direct and relevant implications on several aspects of the design and use of an automatic machine, like the dimensioning of the actuators and of the reduction gears, the vibrations and efforts generated on the machine and on the load, the tracking errors during the motion execution. For these reasons, in order to understand and appreciate the peculiarities of the different techniques available for trajectory planning, besides the mathematical aspects of their implementation also a detailed analysis in the time and frequency domains, a comparison of their main properties under different points of view, and general considerations related to their practical use are reported.

461 citations


Journal ArticleDOI
TL;DR: The notion of motion evidence is presented, which allows us to overcome the low signal-to-noise ratio that arises during rapid detection of moving vehicles in noisy urban environments and how to detect poorly visible black vehicles.
Abstract: Situational awareness is crucial for autonomous driving in urban environments. This paper describes the moving vehicle detection and tracking module that we developed for our autonomous driving robot Junior. The robot won second place in the Urban Grand Challenge, an autonomous driving race organized by the U.S. Government in 2007. The module provides reliable detection and tracking of moving vehicles from a high-speed moving platform using laser range finders. Our approach models both dynamic and geometric properties of the tracked vehicles and estimates them using a single Bayes filter per vehicle. We present the notion of motion evidence, which allows us to overcome the low signal-to-noise ratio that arises during rapid detection of moving vehicles in noisy urban environments. Furthermore, we show how to build consistent and efficient 2D representations out of 3D range data and how to detect poorly visible black vehicles. Experimental validation includes the most challenging conditions presented at the Urban Grand Challenge as well as other urban settings.

Journal ArticleDOI
TL;DR: A decentralized, adaptive control law is presented to drive a network of mobile robots to an optimal sensing configuration and convergence and consensus of parameters is proven with a Lyapunovtype proof.
Abstract: A decentralized, adaptive control law is presented to drive a network of mobile robots to an optimal sensing configuration. The control law is adaptive in that it uses sensor measurements to learn the distribution of sensory information in the environment. It is decentralized in that it requires only information local to each robot. The controller is then improved by introducing a consensus algorithm to propagate sensory information from every robot throughout the network. Convergence and consensus of parameters is proven with a Lyapunovtype proof. The controller with and without consensus is demonstrated in numerical simulations. These techniques are suggestive of broader applications of adaptive control methodologies to decentralized control problems in unknown dynamic environments.

Journal ArticleDOI
TL;DR: An overview of the systematic evaluation of safety in human—robot interaction, covering various aspects of the most significant injury mechanisms is given, including the problem of the quasi-static constrained impact, which could pose a serious threat to the human even for low-inertia robots under certain circumstances.
Abstract: Physical human—robot interaction and cooperation has become a topic of increasing importance and of major focus in robotics research. An essential requirement of a robot designed for high mobility and direct interaction with human users or uncertain environments is that it must in no case pose a threat to the human. Until recently, quite a few attempts were made to investigate real-world threats via collision tests and use the outcome to considerably improve safety during physical human—robot interaction. In this paper, we give an overview of our systematic evaluation of safety in human—robot interaction, covering various aspects of the most significant injury mechanisms. In order to quantify the potential injury risk emanating from such a manipulator, impact tests with the DLR-Lightweight Robot III were carried out using standard automobile crash test facilities at the German Automobile Club (ADAC). Based on these tests, several industrial robots of different weight have been evaluated and the influence of the robot mass and velocity have been investigated. The evaluated non-constrained impacts would only partially capture the nature of human—robot safety. A possibly constrained environment and its effect on the resulting human injuries are discussed and evaluated from different perspectives. As well as such impact tests and simulations, we have analyzed the problem of the quasi-static constrained impact, which could pose a serious threat to the human even for low-inertia robots under certain circumstances. Finally, possible injuries relevant in robotics are summarized and systematically classified.

Proceedings ArticleDOI
10 Oct 2009
TL;DR: It is found that personal experience with pets and robots decreases a person's personal space around robots, and the personality trait of agreeableness decreases personal spaces when people approach robots, while the personality traits of neuroticism and having negative attitudes toward robots increase personal spacesWhen robots approach people.
Abstract: As robots enter the everyday physical world of people, it is important that they abide by society's unspoken social rules such as respecting people's personal spaces. In this paper, we explore issues related to human personal space around robots, beginning with a review of the existing literature in human-robot interaction regarding the dimensions of people, robots, and contexts that influence human-robot interactions. We then present several research hypotheses which we tested in a controlled experiment (N=30). Using a 2 (robotics experience vs. none: between-participants) × 2 (robot head oriented toward a participant's face vs. legs: within-participants) mixed design experiment, we explored the factors that influence proxemic behavior around robots in several situations: (1) people approaching a robot, (2) people being approached by an autonomously moving robot, and (3) people being approached by a teleoperated robot. We found that personal experience with pets and robots decreases a person's personal space around robots. In addition, when the robot's head is oriented toward the person's face, it increases the minimum comfortable distance for women, but decreases the minimum comfortable distance for men. We also found that the personality trait of agreeableness decreases personal spaces when people approach robots, while the personality trait of neuroticism and having negative attitudes toward robots increase personal spaces when robots approach people. These results have implications for both human-robot interaction theory and design.

Journal ArticleDOI
TL;DR: ESIP (efficient Single-robot Informative Path planning), an approximation algorithm for optimizing the path of a single robot, and a general technique, sequential allocation, which can be used to extend any single robot planning algorithm, such as eSIP, for the multi-ro robot problem.
Abstract: The need for efficient monitoring of spatio-temporal dynamics in large environmental applications, such as the water quality monitoring in rivers and lakes, motivates the use of robotic sensors in order to achieve sufficient spatial coverage. Typically, these robots have bounded resources, such as limited battery or limited amounts of time to obtain measurements. Thus, careful coordination of their paths is required in order to maximize the amount of information collected, while respecting the resource constraints. In this paper, we present an efficient approach for near-optimally solving the NP-hard optimization problem of planning such informative paths. In particular, we first develop eSIP (efficient Single-robot Informative Path planning), an approximation algorithm for optimizing the path of a single robot. Hereby, we use a Gaussian Process to model the underlying phenomenon, and use the mutual information between the visited locations and remainder of the space to quantify the amount of information collected. We prove that the mutual information collected using paths obtained by using eSIP is close to the information obtained by an optimal solution. We then provide a general technique, sequential allocation, which can be used to extend any single robot planning algorithm, such as eSIP, for the multi-robot problem. This procedure approximately generalizes any guarantees for the single-robot problem to the multi-robot case. We extensively evaluate the effectiveness of our approach on several experiments performed infield for two important environmental sensing applications, lake and river monitoring, and simulation experiments performed using several real world sensor network data sets.

Journal ArticleDOI
TL;DR: This paper presents a region-based shape controller for a swarm of robots that does not require specific orders or positions of the robots inside the region and yet different formations can be formed for a Swarm of robots.

Journal ArticleDOI
TL;DR: This paper presents a practical nonsingular terminal sliding-mode (TSM) tracking control design for robot manipulators using time-delay estimation (TDE) and provides high-accuracy control and robustness against parameters variations.
Abstract: This paper presents a practical nonsingular terminal sliding-mode (TSM) tracking control design for robot manipulators using time-delay estimation (TDE). The proposed control assures fast convergence due to the nonlinear TSM, and requires no prior knowledge about the robot dynamics due to the TDE. Despite its model-free nature, the proposed control provides high-accuracy control and robustness against parameters variations. The simplicity, robustness, and fast convergence of the proposed control are verified through both 2-DOF planar robot simulations and 3-DOF PUMA-type robot experiments.

Proceedings ArticleDOI
10 Oct 2009
TL;DR: Men were more likely to donate money to the female robot, while women showed little preference, and subjects tended to rate the robot of the opposite sex as more credible, trustworthy, and engaging.
Abstract: Persuasive Robotics is the study of persuasion as it applies to human-robot interaction (HRI). Persuasion can be generally defined as an attempt to change another's beliefs or behavior. The act of influencing others is fundamental to nearly every type of social interaction. Any agent desiring to seamlessly operate in a social manner will need to incorporate this type of core human behavior. As in human interaction, myriad aspects of a humanoid robot's appearance and behavior can significantly alter its persuasiveness - this work will focus on one particular factor: gender. In the current study, run at the Museum of Science in Boston, subjects interacted with a humanoid robot whose gender was varied. After a short interaction and persuasive appeal, subjects responded to a donation request made by the robot, and subsequently completed a post-study questionnaire. Findings showed that men were more likely to donate money to the female robot, while women showed little preference. Subjects also tended to rate the robot of the opposite sex as more credible, trustworthy, and engaging. In the case of trust and engagement the effect was much stronger between male subjects and the female robot. These results demonstrate the importance of considering robot and human gender in the design of HRI.

Proceedings ArticleDOI
10 Oct 2009
TL;DR: KINDROB is a first-order knowledge representation based on description logics that provides specific mechanisms and tools for action-centered representation, for the automated acquisition of grounded concepts through observation and experience, for reasoning about and managing uncertainty, and for fast inference — knowledge processing features that are particularly necessary for autonomous robot control.
Abstract: Knowledge processing is an essential technique for enabling autonomous robots to do the right thing to the right object in the right way. Using knowledge processing the robots can achieve more flexible and general behavior and better performance. While knowledge representation and reasoning has been a well-established research field in Artificial Intelligence for several decades, little work has been done to design and realize knowledge processing mechanisms for the use in the context of robotic control. In this paper, we report on KNOWROB, a knowledge processing system particularly designed for autonomous personal robots. KNOWROB is a first-order knowledge representation based on description logics that provides specific mechanisms and tools for action-centered representation, for the automated acquisition of grounded concepts through observation and experience, for reasoning about and managing uncertainty, and for fast inference — knowledge processing features that are particularly necessary for autonomous robot control.

Proceedings ArticleDOI
14 Apr 2009
TL;DR: In this paper, the authors describe the development of a nonlinear vehicle control system based on a decomposition into a nested structure and feedback linearization which can be implemented on an embedded microcontroller.
Abstract: Four-rotor micro aerial robots, so called quadrotor UAVs, are one of the most preferred type of unmanned aerial vehicles for near-area surveillance and exploration both in military and commercial in- and outdoor applications. The reason is the very easy construction and steering principle using four rotors in a cross configuration. However, stabilizing control and guidance of these vehicles is a difficult task because of the nonlinear dynamic behavior. In addition, the small payload and the reduced processing power of the onboard electronics are further limitations for any control system implementation. This paper describes the development of a nonlinear vehicle control system based on a decomposition into a nested structure and feedback linearization which can be implemented on an embedded microcontroller. Some first simulation results underline the performance of this new control approach for the current realization.

Journal ArticleDOI
01 Feb 2009
TL;DR: A solution for human tracking with a mobile robot that implements multisensor data fusion techniques based on the recognition of typical leg patterns extracted from laser scans, showing that robust human tracking can be performed within complex indoor environments.
Abstract: One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.

Journal ArticleDOI
TL;DR: Current ER research is surveyed according to the degree of a priori knowledge used to formulate the various fitness functions employed during evolution to identify methods that allow the development of the greatest degree of novel control, while requiring the minimum amount of aPriori task knowledge from the designer.

Journal IssueDOI
TL;DR: This work presents a self-supervised learning process for long-range vision that is able to accurately classify complex terrain at distances up to the horizon, thus allowing superior strategic planning.
Abstract: Most vision-based approaches to mobile robotics suffer from the limitations imposed by stereo obstacle detection, which is short range and prone to failure. We present a self-supervised learning process for long-range vision that is able to accurately classify complex terrain at distances up to the horizon, thus allowing superior strategic planning. The success of the learning process is due to the self-supervised training data that are generated on every frame: robust, visually consistent labels from a stereo module; normalized wide-context input windows; and a discriminative and concise feature representation. A deep hierarchical network is trained to extract informative and meaningful features from an input image, and the features are used to train a real-time classifier to predict traversability. The trained classifier sees obstacles and paths from 5 to more than 100 m, far beyond the maximum stereo range of 12 m, and adapts very quickly to new environments. The process was developed and tested on the LAGR (Learning Applied to Ground Robots) mobile robot. Results from a ground truth data set, as well as field test results, are given. © 2009 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: An extension of the method of virtual constraints and hybrid zero dynamics (HZD), a very successful method for planar bipeds, is used in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit, for a 3-D bipedal walking robot.
Abstract: This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3-D bipedal robot consisting of a torso, revolute knees, and passive (unactuated) point feet. The walking surface is assumed to be rigid and flat; the contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and six actuators. In addition to the reduced number of actuators, the interest of studying robots with point feet is that the feedback control solution must explicitly account for the robot's natural dynamics in order to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics (HZD), a very successful method for planar bipeds, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit, for a 3-D (spatial) bipedal walking robot. This method allows the computations for the controller design and the periodic orbit to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincare map of the HZD. Most periodic walking gaits for this robot are unstable when the controlled outputs are selected to be the actuated coordinates. Three strategies are explored to produce stable walking. The first strategy consists of imposing a stability condition during the search of a periodic gait by optimization. The second strategy uses an event-based controller to modify the eigenvalues of the (linearized) Poincare map. In the third approach, the effect of output selection on the zero dynamics is discussed and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller.

Journal ArticleDOI
TL;DR: This work proposes a representation and a planning algorithm able to deal with problems integrating task planning as well as motion and manipulation planning knowledge involving several robots and objects and describes the main features of an implemented planner.
Abstract: We propose a representation and a planning algorithm able to deal with problems integrating task planning as well as motion and manipulation planning knowledge involving several robots and objects. Robot plans often include actions where the robot has to place itself in some position in order to perform some other action or to "modify" the configuration of its environment by displacing objects. Our approach aims at establishing a bridge between task planning and manipulation planning that allows a rigorous treatment of geometric preconditions and effects of robot actions in realistic environments. We show how links can be established between a symbolic description and its geometric counterpart and how they can be used in an integrated planning process that is able to deal with intricate symbolic and geometric constraints. Finally, we describe the main features of an implemented planner and discuss several examples of its use.

Proceedings ArticleDOI
12 May 2009
TL;DR: A general system consisting of sensors and algorithms which enables a small sized flying vehicle to operate indoors by adapting techniques which have been successfully applied on ground robots is presented.
Abstract: Recently there has been increasing research on the development of autonomous flying vehicles.Whereas most of the proposed approaches are suitable for outdoor operation, only a few techniques have been designed for indoor environments. In this paper we present a general system consisting of sensors and algorithms which enables a small sized flying vehicle to operate indoors. This is done by adapting techniques which have been successfully applied on ground robots. We released our system as open-source with the intention to provide the community with a new framework for building applications for indoor flying robots. We present a set of experiments to validate our system on an open source quadrotor.

Journal ArticleDOI
TL;DR: A comprehensive introduction to the design of the minimally expressive robot KASPAR, which is particularly suitable for human--robot interaction studies, and a study in the field of developmental robotics into computational architectures based on interaction histories for robot ontogeny.
Abstract: This paper provides a comprehensive introduction to the design of the minimally expressive robot KASPAR, which is particularly suitable for human--robot interaction studies. A low-cost design with off-the-shelf components has been used in a novel design inspired from a multi-disciplinary viewpoint, including comics design and Japanese Noh theatre. The design rationale of the robot and its technical features are described in detail. Three research studies will be presented that have been using KASPAR extensively. Firstly, we present its application in robot-assisted play and therapy for children with autism. Secondly, we illustrate its use in human--robot interaction studies investigating the role of interaction kinesics and gestures. Lastly, we describe a study in the field of developmental robotics into computational architectures based on interaction histories for robot ontogeny. The three areas differ in the way as to how the robot is being operated and its role in social interaction scenarios. Each will be introduced briefly and examples of the results will be presented. Reflections on the specific design features of KASPAR that were important in these studies and lessons learnt from these studies concerning the design of humanoid robots for social interaction will also be discussed. An assessment of the robot in terms of utility of the design for human--robot interaction experiments concludes the paper.

Journal ArticleDOI
TL;DR: This work presents a scalable approach to dynamically allocating a swarm of homogeneous robots to multiple tasks, which are to be performed in parallel, following a desired distribution, and employs a decentralized strategy that requires no communication among robots.
Abstract: We present a scalable approach to dynamically allocating a swarm of homogeneous robots to multiple tasks, which are to be performed in parallel, following a desired distribution. We employ a decentralized strategy that requires no communication among robots. It is based on the development of a continuous abstraction of the swarm obtained by modeling population fractions and defining the task allocation problem as the selection of rates of robot ingress and egress to and from each task. These rates are used to determine probabilities that define stochastic control policies for individual robots, which, in turn, produce the desired collective behavior. We address the problem of computing rates to achieve fast redistribution of the swarm subject to constraint(s) on switching between tasks at equilibrium. We present several formulations of this optimization problem that vary in the precedence constraints between tasks and in their dependence on the initial robot distribution. We use each formulation to optimize the rates for a scenario with four tasks and compare the resulting control policies using a simulation in which 250 robots redistribute themselves among four buildings to survey the perimeters.

Proceedings ArticleDOI
12 May 2009
TL;DR: The development of a new compact soft actuation unit intended to be used in multi degree of freedom and small scale robotic systems such as the child humanoid robot “iCub” is presented.
Abstract: This paper presents the development of a new compact soft actuation unit intended to be used in multi degree of freedom and small scale robotic systems such as the child humanoid robot “iCub” [1]. Compared to the other existing series elastic linear or rotary implementations the proposed design shows high integration density and wider passive deflection. The miniaturization of the newly developed high performance unit was achieved with a use of a new rotary spring module based on a novel arrangement of linear springs.

Journal ArticleDOI
TL;DR: In this article, a review of various manufacturing processes which can be applied to soft robot fabrication are summarized, and features of those processes are described, which are divided into three categories; soft robot body fabrication, actuators for soft robots and stretchable electronics.
Abstract: This paper reviews various processes for manufacturing new type of robots termed “soft biomimetic robots.” Most robots are made of rigid metallic materials. But in recent years, various biomimetic robots based on soft materials and compliant parts have been developed. New manufacturing processes are required to fabricate these types of robots, and the processes include Shape Deposition Manufacturing (SDM) and Smart Composite Microstructures (SCM). Since the design of robots are limited by the available material and manufacturing processes, it is important to develop new manufacturing processes that will enable development of novel soft biomimetic robots. In this paper, various manufacturing processes which can be applied to soft robot fabrication are summarized, and features of those processes are described. Processes are divided into three categories; soft robot body fabrication, actuators for soft robots and stretchable electronics. This review provides a guideline for selecting manufacturing processes for soft robots and developing new processes that will enable new type of robots to be designed.