scispace - formally typeset
Search or ask a question
Topic

Robot kinematics

About: Robot kinematics is a research topic. Over the lifetime, 18145 publications have been published within this topic receiving 308096 citations.


Papers
More filters
Proceedings Article
01 Jan 1983

659 citations

Proceedings ArticleDOI
09 Oct 2006
TL;DR: An efficient collision detection method that uses only proprioceptive robot sensors and provides also directional information for a safe robot reaction after collision is presented.
Abstract: A robot manipulator sharing its workspace with humans should be able to quickly detect collisions and safely react for limiting injuries due to physical contacts. In the absence of external sensing, relative motions between robot and human are not predictable and unexpected collisions may occur at any location along the robot arm. Based on physical quantities such as total energy and generalized momentum of the robot manipulator, we present an efficient collision detection method that uses only proprioceptive robot sensors and provides also directional information for a safe robot reaction after collision. The approach is first developed for rigid robot arms and then extended to the case of robots with elastic joints, proposing different reaction strategies. Experimental results on collisions with the DLR-III lightweight manipulator are reported.

650 citations

Proceedings ArticleDOI
25 Mar 1985
TL;DR: The approach proposed in this paper relies on the use of a multisensory system, favo ring of the data collected by the more accurate sensor in a given situation, averaging of different but consistent measurements of the same entity weighted with their associated uncertainties.
Abstract: In order to understand its environment, a mobile robot should be able to model consistently this environment, and to locate itself correctly. One major difficulty to be solved is the inaccuracies introduced by the sensors. The approach proposed in this paper to cope with this problem relies on 1) defining general principles to deal with uncertainties : the use of a multisensory system, favo ring of the data collected by the more accurate sensor in a given situation, averaging of different but consistent measurements of the same entity weighted with their associated uncertainties, and 2) a methodology enabling a mobile robot to define its own reference landmarks while exploring its environment. These ideas are presented together with an example of their application on the mobile robot HILARE.

644 citations

Journal ArticleDOI
TL;DR: A learning method is proposed, which is called Stable Estimator of Dynamical Systems (SEDS), to learn the parameters of the DS to ensure that all motions closely follow the demonstrations while ultimately reaching and stopping at the target.
Abstract: This paper presents a method to learn discrete robot motions from a set of demonstrations. We model a motion as a nonlinear autonomous (i.e., time-invariant) dynamical system (DS) and define sufficient conditions to ensure global asymptotic stability at the target. We propose a learning method, which is called Stable Estimator of Dynamical Systems (SEDS), to learn the parameters of the DS to ensure that all motions closely follow the demonstrations while ultimately reaching and stopping at the target. Time-invariance and global asymptotic stability at the target ensures that the system can respond immediately and appropriately to perturbations that are encountered during the motion. The method is evaluated through a set of robot experiments and on a library of human handwriting motions.

642 citations

Proceedings ArticleDOI
Chelsea Finn1, Sergey Levine1
01 May 2017
TL;DR: This work develops a method for combining deep action-conditioned video prediction models with model-predictive control that uses entirely unlabeled training data and enables a real robot to perform nonprehensile manipulation — pushing objects — and can handle novel objects not seen during training.
Abstract: A key challenge in scaling up robot learning to many skills and environments is removing the need for human supervision, so that robots can collect their own data and improve their own performance without being limited by the cost of requesting human feedback. Model-based reinforcement learning holds the promise of enabling an agent to learn to predict the effects of its actions, which could provide flexible predictive models for a wide range of tasks and environments, without detailed human supervision. We develop a method for combining deep action-conditioned video prediction models with model-predictive control that uses entirely unlabeled training data. Our approach does not require a calibrated camera, an instrumented training set-up, nor precise sensing and actuation. Our results show that our method enables a real robot to perform nonprehensile manipulation — pushing objects — and can handle novel objects not seen during training.

620 citations


Network Information
Related Topics (5)
Robot
103.8K papers, 1.3M citations
96% related
Adaptive control
60.1K papers, 1.2M citations
91% related
Control theory
299.6K papers, 3.1M citations
89% related
Control system
129K papers, 1.5M citations
87% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
2022162
2021402
2020543
2019582
2018901