Topic

# Robust control

About: Robust control is a research topic. Over the lifetime, 42034 publications have been published within this topic receiving 810526 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

01 Mar 1986TL;DR: In this paper, a new architecture for controlling mobile robots is described, which is made up of asynchronous modules that communicate over low-bandwidth channels, each module is an instance of a fairly simple computational machine.

Abstract: A new architecture for controlling mobile robots is described. Layers of control system are built to let the robot operate at increasing levels of competence. Layers are made up of asynchronous modules that communicate over low-bandwidth channels. Each module is an instance of a fairly simple computational machine. Higher-level layers can subsume the roles of lower levels by suppressing their outputs. However, lower levels continue to function as higher levels are added. The result is a robust and flexible robot control system. The system has been used to control a mobile robot wandering around unconstrained laboratory areas and computer machine rooms. Eventually it is intended to control a robot that wanders the office areas of our laboratory, building maps of its surroundings using an onboard arm to perform simple tasks.

7,291 citations

•

17 Aug 1995TL;DR: This paper reviewed the history of the relationship between robust control and optimal control and H-infinity theory and concluded that robust control has become thoroughly mainstream, and robust control methods permeate robust control theory.

Abstract: This paper will very briefly review the history of the relationship between modern optimal control and robust control. The latter is commonly viewed as having arisen in reaction to certain perceived inadequacies of the former. More recently, the distinction has effectively disappeared. Once-controversial notions of robust control have become thoroughly mainstream, and optimal control methods permeate robust control theory. This has been especially true in H-infinity theory, the primary focus of this paper.

6,945 citations

••

15 Oct 1995TL;DR: In this article, the authors present a model for dynamic control systems based on Adaptive Control System Design Steps (ACDS) with Adaptive Observers and Parameter Identifiers.

Abstract: 1. Introduction. Control System Design Steps. Adaptive Control. A Brief History. 2. Models for Dynamic Systems. Introduction. State-Space Models. Input/Output Models. Plant Parametric Models. Problems. 3. Stability. Introduction. Preliminaries. Input/Output Stability. Lyapunov Stability. Positive Real Functions and Stability. Stability of LTI Feedback System. Problems. 4. On-Line Parameter Estimation. Introduction. Simple Examples. Adaptive Laws with Normalization. Adaptive Laws with Projection. Bilinear Parametric Model. Hybrid Adaptive Laws. Summary of Adaptive Laws. Parameter Convergence Proofs. Problems. 5. Parameter Identifiers and Adaptive Observers. Introduction. Parameter Identifiers. Adaptive Observers. Adaptive Observer with Auxiliary Input. Adaptive Observers for Nonminimal Plant Models. Parameter Convergence Proofs. Problems. 6. Model Reference Adaptive Control. Introduction. Simple Direct MRAC Schemes. MRC for SISO Plants. Direct MRAC with Unnormalized Adaptive Laws. Direct MRAC with Normalized Adaptive Laws. Indirect MRAC. Relaxation of Assumptions in MRAC. Stability Proofs in MRAC Schemes. Problems. 7. Adaptive Pole Placement Control. Introduction. Simple APPC Schemes. PPC: Known Plant Parameters. Indirect APPC Schemes. Hybrid APPC Schemes. Stabilizability Issues and Modified APPC. Stability Proofs. Problems. 8. Robust Adaptive Laws. Introduction. Plant Uncertainties and Robust Control. Instability Phenomena in Adaptive Systems. Modifications for Robustness: Simple Examples. Robust Adaptive Laws. Summary of Robust Adaptive Laws. Problems. 9. Robust Adaptive Control Schemes. Introduction. Robust Identifiers and Adaptive Observers. Robust MRAC. Performance Improvement of MRAC. Robust APPC Schemes. Adaptive Control of LTV Plants. Adaptive Control for Multivariable Plants. Stability Proofs of Robust MRAC Schemes. Stability Proofs of Robust APPC Schemes. Problems. Appendices. Swapping Lemmas. Optimization Techniques. Bibliography. Index. License Agreement and Limited Warranty.

4,378 citations

•

01 Jan 1989

TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.

Abstract: From the Publisher:
This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

•

05 Oct 1997TL;DR: In this article, the authors introduce linear algebraic Riccati Equations and linear systems with Ha spaces and balance model reduction, and Ha Loop Shaping, and Controller Reduction.

Abstract: 1. Introduction. 2. Linear Algebra. 3. Linear Systems. 4. H2 and Ha Spaces. 5. Internal Stability. 6. Performance Specifications and Limitations. 7. Balanced Model Reduction. 8. Uncertainty and Robustness. 9. Linear Fractional Transformation. 10. m and m- Synthesis. 11. Controller Parameterization. 12. Algebraic Riccati Equations. 13. H2 Optimal Control. 14. Ha Control. 15. Controller Reduction. 16. Ha Loop Shaping. 17. Gap Metric and ...u- Gap Metric. 18. Miscellaneous Topics. Bibliography. Index.

3,471 citations