scispace - formally typeset
Search or ask a question
Topic

Rogue wave

About: Rogue wave is a research topic. Over the lifetime, 2977 publications have been published within this topic receiving 70933 citations. The topic is also known as: freak wave & monster wave.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigate how nonlinear physics modifies waves relative to those predicted by a linear model and show that nonlinearity does play an important part in the formation of extreme waves on deep water.
Abstract: This paper investigates the size and structure of large waves on the open ocean. We investigate how nonlinear physics modifies waves relative to those predicted by a linear model. We run linear random simulations and extract extreme waves and the surrounding sea-state. For each extreme event, we propagate the waves back in time under linear evolution before propagating the wave-field forward using a nonlinear model. The differences between large linear and nonlinear wave-groups are then examined. The general trends are that under nonlinear evolution, relative to linear evolution, there is, on average, little or no extra amplitude in the nonlinear simulations; that there is an increase in the width of the crest of the wave-group and a contraction of large wave-groups in the mean wave direction; that large waves tend to move to the front of a wave-packet meaning that the locally largest wave is relatively bigger than the wave preceding it; and that nonlinearity can increase the duration of extreme wave events. In all these trends, there is considerable scatter, although the effects observed are clear. Our simulations show that nonlinearity does play an important part in the formation of extreme waves on deep water.

36 citations

Journal ArticleDOI
TL;DR: In this paper, particle escape is shown to correspond approximately to local wave breaking, which leads to the cavitation responsible for "ringing" of vertical cylinders in steep waves, and particle escape, which is more frequent in shallow water, offers a simple alternative explanation for these observations, as well as for the violent motion at the wave crests, which often confuses rogue wave data.
Abstract: Marine hydrodynamics is characterised by both weak nonlinearities, as seen for example in drift forces, and strong nonlinearities, as seen for example in wave breaking. In many cases their relative importance is still a controversial matter. The phenomenon of particle escape, seen in linear theory, appears to offer a guide to when strongly nonlinear effects will start to become important, and what will happen when they do. In the case of the “ringing” of vertical cylinders in steep waves, particle escape is shown to correspond approximately to local wave breaking, which leads to the cavitation responsible for “ringing”. Another example is rogue waves, where recent results from weakly nonlinear theory are disappointing, and also fail to explain the rogue waves seen in relatively shallow water, as in the data from the Draupner and Gorm platforms. Recent laboratory experiments, too, show wave crests continuing to grow in height after all frequency components have come into phase, which is inconsistent with weakly nonlinear theory. Particle escape, which is more frequent in shallow water, offers a simple alternative explanation for these observations, as well as for the violent motion at the wave crests, which often confuses rogue-wave data. Extreme wave crests have long been known to be strongly nonlinear, so it appears possible that rogue waves are primarily a strongly nonlinear phenomenon. Fully nonlinear computations of two interacting regular waves are presented, to explore further the connection between particle escape and wave breaking. They are combined with Monte-Carlo simulations of particle escape in hurricane conditions, and the very few measurements of large breaking waves during hurricanes. It is concluded that large breaking waves will have occurred about once per hour, and once per 100 h, respectively, in the recent hurricanes LILI and IVAN. These findings call into question the use of non-breaking wave models in the design codes for fixed steel offshore structures.

36 citations

Journal ArticleDOI
TL;DR: A generalized Darboux transformation of a general coupled nonlinear Schrodinger (GCNLS) system is constructed and the formation of triplet, triangle and hexagonal patterns of rogue waves is demonstrated.

36 citations

Journal ArticleDOI
20 May 2015
TL;DR: In this article, the authors proposed that rogue solitons (RSs) in optical fibers may actually result from a complex dynamical process very similar to well-known mechanisms such as glass transitions and protein folding.
Abstract: Nondeterministic giant waves, denoted as rogue, killer, monster, or freak waves, have been reported in many different branches of physics. Their physical interpretation is however still debated: despite massive numerical and experimental evidence, a solid explanation for their spontaneous formation has not been identified yet. Here we propose that rogue waves [more precisely, rogue solitons (RSs)] in optical fibers may actually result from a complex dynamical process very similar to well-known mechanisms such as glass transitions and protein folding. We describe how the interaction among optical solitons produces an energy landscape in a highly dimensional parameter space with multiple quasi-equilibrium points. These configurations have the same statistical distribution of the observed rogue events and are explored during the light dynamics due to soliton collisions, with inelastic mechanisms enhancing the process. Slightly different initial conditions lead to very different dynamics in this complex geometry; a RS turns out to stem from one particularly deep quasi-equilibrium point of the energy landscape in which the system may be transiently trapped during evolution. This explanation will prove to be fruitful to the vast community interested in freak waves.

36 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
82% related
Vortex
72.3K papers, 1.3M citations
81% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Turbulence
112.1K papers, 2.7M citations
78% related
Partial differential equation
70.8K papers, 1.6M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023234
2022479
2021291
2020280
2019272
2018205