scispace - formally typeset
Search or ask a question
Topic

Rogue wave

About: Rogue wave is a research topic. Over the lifetime, 2977 publications have been published within this topic receiving 70933 citations. The topic is also known as: freak wave & monster wave.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors use the winding of real tori to show the appearance of generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the focusing nonlinear Schrodinger (fNLS) equation that exhibit generalized rogue wave.
Abstract: Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrodinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of rogue waves can be achieved via the consideration of multiphase, or finite-band, fNLS solutions of whom the standard SFBs and the structures forming due to their collisions represent particular, degenerate, cases. A generalized rogue wave notion then naturally enters as a large-amplitude localized coherent structure occurring within a finite-band fNLS solution. In this paper, we use the winding of real tori to show the mechanism of the appearance of such generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the fNLS equation that exhibit generalized rogue waves.

31 citations

Journal ArticleDOI
TL;DR: In this article, a unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast.
Abstract: Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a (3 + 1 ) -dimensional B-type Kadomtsev-Petviashvili equation is derived for weakly dispersive waves propagating in a fluid.

31 citations

Journal ArticleDOI
TL;DR: In this article, a rogue wave formation mechanism is proposed within the framework of a coupled nonlinear Schrodinger (CNLS) system corresponding to the interaction of two waves propagating in oblique directions in deep water.
Abstract: A rogue wave formation mechanism is proposed within the framework of a coupled nonlinear Schrodinger (CNLS) system corresponding to the interaction of two waves propagating in oblique directions in deep water. A rogue condition is introduced that links the angle of interaction with the group velocities of these waves: different angles of interaction can result in a major enhancement of rogue events in both numbers and amplitude. For a range of interacting directions it is found that the CNLS system exhibits significantly more extreme wave amplitude events than its scalar counterpart. Furthermore, the rogue events of the coupled system are found to be well approximated by hyperbolic secant functions; they are vectorial soliton-type solutions of the CNLS system, typically not considered to be integrable. Overall, our results indicate that crossing states provide an important mechanism for the generation of rogue water wave events.

31 citations

Journal ArticleDOI
TL;DR: In this article, the effects of higher-order nonlinearity on the rogue wave dynamics were investigated using the generalized Darboux transformation, based on the Darbouque matrix method.
Abstract: In this work, we are concerned with a generalized nonlinear Schrodinger equation, which can describe the propagation of nonlinear wave phenomena in plasma, optics and in deep water field. We construct, up to the second-order expansion, rogue wave solutions and give general formula to obtain higher-order ones to this system. We investigate the effects of the higher-order nonlinearity on the rogue waves dynamics. We make use of the generalized Darboux transformation, based on the Darboux matrix method.

31 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
82% related
Vortex
72.3K papers, 1.3M citations
81% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Turbulence
112.1K papers, 2.7M citations
78% related
Partial differential equation
70.8K papers, 1.6M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023234
2022479
2021291
2020280
2019272
2018205