scispace - formally typeset
Search or ask a question
Topic

Rogue wave

About: Rogue wave is a research topic. Over the lifetime, 2977 publications have been published within this topic receiving 70933 citations. The topic is also known as: freak wave & monster wave.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, numerical simulations of nonlinear waves have been compared in order to assess the ability of numerical models to describe the evolution of weakly nonlinear wave and predict the probability of occurrence of extreme waves within a variety of random directional wave fields.
Abstract: Nonlinear modulational instability of wavepackets is one of the mechanisms responsible for the formation of large-amplitude water waves. Here, mechanically generated waves in a three-dimensional basin and numerical simulations of nonlinear waves have been compared in order to assess the ability of numerical models to describe the evolution of weakly nonlinear waves and predict the probability of occurrence of extreme waves within a variety of random directional wave fields. Numerical simulations have been performed following two different approaches: numerical integration of a modified nonlinear Schrodinger equation and numerical integration of the potential Euler equations based on a higher-order spectral method. Whereas the first makes a narrow-banded approximation (both in frequency and direction), the latter is free from bandwidth constraints. Both models assume weakly nonlinear waves. On the whole, it has been found that the statistical properties of numerically simulated wave fields are in good quantitative agreement with laboratory observations. Moreover, this study shows that the modified nonlinear Schrodinger equation can also provide consistent results outside its narrow-banded domain of validity.

153 citations

Journal ArticleDOI
TL;DR: In this article, the occurrence and dynamics of rogue waves in three-dimensional deep water using phase-resolved numerical simulations based on a high-order spectral (HOS) method are investigated.
Abstract: We study the occurrence and dynamics of rogue waves in three-dimensional deep water using phase-resolved numerical simulations based on a high-order spectral (HOS) method. We obtain a large ensemble of nonlinear wave-field simulations ( in HOS method), initialized by spectral parameters over a broad range, from which nonlinear wave statistics and rogue wave occurrence are investigated. The HOS results are compared to those from the broad-band modified nonlinear Schrodinger (BMNLS) equations. Our results show that for (initially) narrow-band and narrow directional spreading wave fields, modulational instability develops, resulting in non-Gaussian statistics and a probability of rogue wave occurrence that is an order of magnitude higher than linear theory prediction. For longer times, the evolution becomes quasi-stationary with non-Gaussian statistics, a result not predicted by the BMNLS equations (without consideration of dissipation). When waves spread broadly in frequency and direction, the modulational instability effect is reduced, and the statistics and rogue wave probability are qualitatively similar to those from linear theory. To account for the effects of directional spreading on modulational instability, we propose a new modified Benjamin–Feir index for effectively predicting rogue wave occurrence in directional seas. For short-crested seas, the probability of rogue waves based on number frequency is imprecise and problematic. We introduce an area-based probability, which is well defined and convergent for all directional spreading. Based on a large catalogue of simulated rogue wave events, we analyse their geometry using proper orthogonal decomposition (POD). We find that rogue wave profiles containing a single wave can generally be described by a small number of POD modes.

151 citations

Journal ArticleDOI
TL;DR: Dispersive Fourier transformation is used to measure single-shot spectra of Raman-induced noise-like pulses, demonstrating that for low cavity gain values Raman emission is sporadic and follows rogue-wave-like probability distributions, while a saturated regime with Gaussian statistics is obtained for high pump powers.
Abstract: We report on an experimental study of spectral fluctuations induced by intracavity Raman conversion in a passively partially mode-locked, all-normal dispersion fiber laser. Specifically, we use dispersive Fourier transformation to measure single-shot spectra of Raman-induced noise-like pulses, demonstrating that for low cavity gain values Raman emission is sporadic and follows rogue-wave-like probability distributions, while a saturated regime with Gaussian statistics is obtained for high pump powers. Our experiments further reveal intracavity rogue waves originating from cascaded Raman dynamics.

148 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-parametric family of quasi-rational solutions to the focusing NLS equation is presented, presenting a profile of multiple rogue waves, and these solutions have also been used by us to construct a large family of smooth, real localized rational solutions of the KP-I equation quite different from the multi-lumps solutions first constructed in Bordag et al. (1977).
Abstract: . We construct a multi-parametric family of quasi-rational solutions to the focusing NLS equation, presenting a profile of multiple rogue waves. These solutions have also been used by us to construct a large family of smooth, real localized rational solutions of the KP-I equation quite different from the multi-lumps solutions first constructed in Bordag et al. (1977). The physical relevance of both equations is very large. From the point of view of geosciences,the focusing NLS equation is relevant to the description of surface waves in deep water, and the KP-I equation occurs in the description of capillary gravitational waves on a liquid surface, but also when one considers magneto-acoustic waves in plasma (Zhdanov, 1984) etc. In addition, there are plenty of equations of physical importance, having their origin in fiber optics, hydrodynamics, plasma physics and many other areas, which are gauge equivalent to the NLS equation or to the KP-I equation. Therefore our results can be easily extended to a large number of systems of physical interest to be discussed in separate publications.

147 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the formation of waves of large amplitude (freak waves, killer waves) at the surface of the ocean and studied the physical mechanism of wave formation.
Abstract: Formation of waves of large amplitude (freak waves, killer waves) at the surface of the ocean is studied numerically. We have observed that freak waves have the same ratio of the wave height to the wave length as limiting Stokes waves. When a freak wave reaches this limiting state, it breaks. The physical mechanism of freak wave formation is discussed.

146 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
82% related
Vortex
72.3K papers, 1.3M citations
81% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Turbulence
112.1K papers, 2.7M citations
78% related
Partial differential equation
70.8K papers, 1.6M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023234
2022479
2021291
2020280
2019272
2018205