scispace - formally typeset
Search or ask a question
Topic

Rogue wave

About: Rogue wave is a research topic. Over the lifetime, 2977 publications have been published within this topic receiving 70933 citations. The topic is also known as: freak wave & monster wave.


Papers
More filters
Journal ArticleDOI
TL;DR: Numerical simulations compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited.
Abstract: The nonlinear Schrodinger equation (NLSE) is a seminal equation of nonlinear physics describing wave packet evolution in weakly-nonlinear dispersive media. The NLSE is especially important in understanding how high amplitude “rogue waves” emerge from noise through the process of modulation instability (MI) whereby a perturbation on an initial plane wave can evolve into strongly-localised “breather” or “soliton on finite background (SFB)” structures. Although there has been much study of such structures excited under controlled conditions, there remains the open question of how closely the analytic solutions of the NLSE actually model localised structures emerging in noise-seeded MI. We address this question here using numerical simulations to compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE. Our results show that both elementary breather and higher-order SFB structures are observed in chaotic MI, with the characteristics of the noise-induced peaks clustering closely around analytic NLSE predictions. A significant conclusion of our work is to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited. Rather, we confirm earlier suggestions that NLSE rogue waves are most appropriately identified as collisions between elementary SFB solutions.

106 citations

Journal ArticleDOI
TL;DR: In this article, the collation, quality control, and analysis of single-point field measurements from fixed sensors mounted on offshore platforms is discussed, where the authors describe the offshore installations, instrumentation, and the strict quality control procedure employed to ensure a reliable dataset.
Abstract: This paper concerns the collation, quality control, and analysis of single-point field measurements from fixed sensors mounted on offshore platforms. In total, the quality-controlled database contains 122 million individual waves, of which 3649 are rogue waves. Geographically, the majority of the field measurements were recorded in the North Sea, with supplementary data from the Gulf of Mexico, the South China Sea, and the North West shelf of Australia. The significant wave height ranged from 0.12 to 15.4 m, the peak period ranged from 1 to 24.7 s, the maximum crest height was 18.5 m, and the maximum recorded wave height was 25.5 m. This paper will describe the offshore installations, instrumentation, and the strict quality control procedure employed to ensure a reliable dataset. An examination of sea state parameters, environmental conditions, and local characteristics is performed to gain an insight into the behavior of rogue waves. Evidence is provided to demonstrate that rogue waves are not go...

106 citations

Journal ArticleDOI
Shihua Chen1
TL;DR: The rogue wave can exhibit an intriguing twisted rogue-wave pair that involves four well-defined zero-amplitude points and may enrich the understanding on the nature of rogue waves.
Abstract: Exact explicit rogue wave solutions of the Sasa-Satsuma equation are obtained by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the rogue wave can exhibit an intriguing twisted rogue-wave pair that involves four well-defined zero-amplitude points. This exotic structure may enrich our understanding on the nature of rogue waves.

105 citations

Journal ArticleDOI
TL;DR: The results indicate that rogue waves occur when the system hits unlikely pockets of wave configurations that trigger large disturbances of the surface height, and the rogue wave precursors in these pockets are wave patterns of regular height, but with a very specific shape that is identified explicitly, thereby allowing for early detection.
Abstract: The appearance of rogue waves in deep sea is investigated by using the modified nonlinear Schrodinger (MNLS) equation in one spatial dimension with random initial conditions that are assumed to be normally distributed, with a spectrum approximating realistic conditions of a unidirectional sea state. It is shown that one can use the incomplete information contained in this spectrum as prior and supplement this information with the MNLS dynamics to reliably estimate the probability distribution of the sea surface elevation far in the tail at later times. Our results indicate that rogue waves occur when the system hits unlikely pockets of wave configurations that trigger large disturbances of the surface height. The rogue wave precursors in these pockets are wave patterns of regular height, but with a very specific shape that is identified explicitly, thereby allowing for early detection. The method proposed here combines Monte Carlo sampling with tools from large deviations theory that reduce the calculation of the most likely rogue wave precursors to an optimization problem that can be solved efficiently. This approach is transferable to other problems in which the system's governing equations contain random initial conditions and/or parameters.

105 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the physics-informed neural network to solve a variety of femtosecond optical soliton solutions of the high-order nonlinear Schrodinger equation.
Abstract: We use the physics-informed neural network to solve a variety of femtosecond optical soliton solutions of the high-order nonlinear Schrodinger equation, including one-soliton solution, two-soliton solution, rogue wave solution, W-soliton solution and M-soliton solution. The prediction error for one-soliton, W-soliton and M-soliton is smaller. As the prediction distance increases, the prediction error will gradually increase. The unknown physical parameters of the high-order nonlinear Schrodinger equation are studied by using rogue wave solutions as data sets. The neural network is optimized from three aspects including the number of layers of the neural network, the number of neurons, and the sampling points. Compared with previous research, our error is greatly reduced. This is not a replacement for the traditional numerical method, but hopefully to open up new ideas.

104 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
82% related
Vortex
72.3K papers, 1.3M citations
81% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Turbulence
112.1K papers, 2.7M citations
78% related
Partial differential equation
70.8K papers, 1.6M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023234
2022479
2021291
2020280
2019272
2018205