scispace - formally typeset
Search or ask a question
Topic

Roller burnishing

About: Roller burnishing is a research topic. Over the lifetime, 395 publications have been published within this topic receiving 3322 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the influence of burnishing force and burnishing speed on the friction and wear performance of acetal homopolymer and polyurethane under dry and lubricated sliding conditions was investigated.
Abstract: The efficacy of using polymers in cylindrical applications depends closely on its surface friction and wear characteristics. In this regard, a surface modification technique through plastic deformation has been implemented. Roller burnishing is commonly used to improve the surface quality of non-ferrous surfaces, but no work showed concern about roller burnishing as a polymer surface treatment process. The objective of the present work is to investigate the influence of burnishing force and burnishing speed on the friction and wear performance of acetal homopolymer and polyurethane under dry and lubricated sliding conditions. The results reveal that the coefficient of friction and wear rate decreased to a minimum value and then increased as higher burnishing force and speed were applied. It was shown that roller burnishing had favourable prospective to be utilized as a valuable polymer surface treatment technique.

10 citations

Journal ArticleDOI
30 Mar 2015
TL;DR: In this article, a mathematical model has been proposed to calculate residual stresses and plastic strains in hollow and solid surface-hardened cylindrical specimens, which take into account both the cases of hardening leading to the isotropy (hydraulic shot blasting procedure) and to the anisotropy (roller burnishing process) of plastic strains.
Abstract: surface plastic hardening, roller burnishing process, hydraulic shot blasting procedure, deformation anisotropy, solid and hollow cylindrical samples, residual stresses, mathematical model, experimental data For the calculation of residual stresses and plastic strains in hollow and solid surface-hardened cylindrical specimens we suggest the mathematical models, which take into account both the cases of hardening leading to the isotropy (hydraulic shot blasting procedure) and to the anisotropy (roller burnishing process) of plastic strains in the surface layer. The introduced mathematical model has a hardening anisotropy parameter which ties the axial and circumferential components of the residual plastic strains tensor. We use the determined axial and/or circumferential components of the residual stresses tensor as the input information. Also we use the following assumptions: smallness of the off-diagonal elements of the residual plastic strains tensor and residual stresses tensor, plastic incompressibility of material, absence of the secondary plastic strains of the material in the compression area of the surface layer. The boundary value problems of the hardened layer stress-strain state estimation after the hardening for the hollow and solid cylindrical specimens are solved and the solution is given in the paper. We give the method for the mathematical model parameter identification under the condition of selfequilibrated residual stresses and the method for the experimental determination of residual stresses by the circles and strips approach. Also, the cycle of the hardening experiments for the hollow and solid specimens from the 40Kh steel (having different proportions of internal and outer diameters) in the roller burnishing process and hydraulic shot blasting modes was performed with the determination of the residual stresses. The mathematical model adequacy is verified through the comparisons with experimental data; good agreement of the calculated and experimental data is demonstrated. The calculated numerical values of the hardening anisotropy parameter are given. The fact that the procedure of surface anisotropic hardening (roller burnishing process) leads to the strong layering of the epures of axial and circumferential residual stresses in depth of the hardened layer is established. Contrastingly, the case of the isotropic hardening (hydraulic shot blasting) leads to almost coinciding epures. Using the experimental and calculated data we have shown that the hardening of tool roller type leads to the larger absolute values of the compressing stresses, which by more than 30% exceeds the stresses after the hardening of hydraulic shot blasting type for the specimens of the same geometry. For the main results of the research we have given the necessary data in the table and also we have presented the epures for the residual stresses distribution. © PNRPU

10 citations

Journal ArticleDOI
TL;DR: In this paper, a novel approach to generate tribologically optimized surfaces by hard ball-end milling and an additional mechanical surface treatment by roller burnishing is tested and applied, and the effects of both processes on the resulting surface topography are analyzed separately.
Abstract: Constant velocity joint shafts are machine elements within the driveshaft of cars. The tribological conditions within the raceways are characterized by mixed friction. To improve the lifetime of these machine elements, surface topography and surface integrity have to be adjusted. The positive effect of subsurface compressive residual stresses on the rolling fatigue strength for roller bearings is well known. Additionally, the positive effects of surface textures on tribological conditions in the mixed friction regime are known from cylinder liners. Within this paper, a novel approach to generate tribologically optimized surfaces by hard ball-end milling and an additional mechanical surface treatment by roller burnishing is tested and applied. First, the effects of both processes on the resulting surface topography are analyzed separately. In addition, the interactions between ball-end milling and burnishing are investigated. Concluding, this paper provides parameters to generate a plateau surface by the combination of ball-end milling and roller burnishing.

10 citations

Journal ArticleDOI
TL;DR: In this article, the principal component analysis and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was used to explore the weight values of burnishing performances and select the optimum parameters.
Abstract: In the current work, the optimal factors are selected to achieve the improvements in the energy consumption (EB), power factor (PB), decreased roughness (DR) and improved surface hardness (IH) for the roller burnishing operation. The process inputs are the burnishing speed (V), the feed (f), and the depth (d). A hybrid approach comprising the principal component analysis and Technique for Order of Preference by Similarity to Ideal Solution was used to explore the weight values of burnishing performances and select the optimum parameters. Moreover, another optimization technique employing the response surface method and archive-based micro-genetic algorithm was adopted to identify the optimal outcomes in the continuous domain. The main findings showed the performances measured are primarily affected by the burnishing feed, depth and speed, respectively. The energy consumption and roughness are approximately decreased by 31.46% and 7.41%, while the power factor and hardness are improved by 17.47% and 43.09%, respectively, as compared to the general process. The outcomes and findings of the investigated work can be used for further research in sustainable design and manufacturing as well as directly used in the knowledge-based and expert systems for burnishing applications in industrial practices.

10 citations

Journal Article
TL;DR: In this paper, two internal roller burnishing tools were used to perform the process on mild steel under different speeds and the impact on surface roughness and surface hardness has been examined.
Abstract: Roller burnishing is a cold working surface treatment process to generate a uniform and work-hardened surface. This study presents two internal roller burnishing tools to perform roller burnishing process on mild steel under different speeds. Burnishing speed impact on surface roughness and surface hardness has been examined.

10 citations


Network Information
Related Topics (5)
Machining
121.3K papers, 1M citations
77% related
Residual stress
39K papers, 554.8K citations
70% related
Carbide
36.3K papers, 503.5K citations
69% related
Austenite
36.6K papers, 514.8K citations
68% related
Alloy
171.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202120
202024
201915
201826
201714
201625