scispace - formally typeset
Search or ask a question
Topic

Rossby wave

About: Rossby wave is a research topic. Over the lifetime, 5028 publications have been published within this topic receiving 161239 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an automated procedure for identifying and tracking mesoscale features based on their SSH signatures yields 35,891 eddies with average lifetime of 32 weeks and an average propagation distance of 550 km.

1,744 citations

Journal ArticleDOI
TL;DR: A review of tropical-extratropical teleconnections with a focus on developments over the Tropical Oceans-Global Atmosphere (TOGA) decade and the current state of understanding can be found in this article.
Abstract: The primary focus of this review is tropical-extratropical interactions and especially the issues involved in determining the response of the extratropical atmosphere to tropical forcing associated with sea surface temperature (SST) anomalies. The review encompasses observations, empirical studies, theory and modeling of the extratropical teleconnections with a focus on developments over the Tropical Oceans-Global Atmosphere (TOGA) decade and the current state of understanding. In the tropical atmosphere, anomalous SSTs force anomalies in convection and large-scale overturning with subsidence in the descending branch of the local Hadley circulation. The resulting strong upper tropospheric divergence in the tropics and convergence in the subtropics act as a Rossby wave source. The climatological stationary planetary waves and associated jet streams, especially in the northern hemisphere, can make the total Rossby wave sources somewhat insensitive to the position of the tropical heating that induces them and thus can create preferred teleconnection response patterns, such as the Pacific-North American (PNA) pattern. However, a number of factors influence the dispersion and propagation of Rossby waves through the atmosphere, including zonal asymmetries in the climatological state, transients, and baroclinic and nonlinear effects. Internal midlatitude sources can amplify perturbations. Observations, modeling, and theory have clearly shown how storm tracks change in response to changes in quasi-stationary waves and how these changes generally feedback to maintain or strengthen the dominant perturbations through vorticity and momentum transports. The response of the extratropical atmosphere naturally induces changes in the underlying surface, so that there are changes in extratropical SSTs and changes in land surface hydrology and moisture availability that can feedback and influence the total response. Land surface processes are believed to be especially important in spring and summer. Anomalous SSTs and tropical forcing have tended to be strongest in the northern winter, and teleconnections in the southern hemisphere are weaker and more variable and thus more inclined to be masked by natural variability. Occasional strong forcing in seasons other than winter can produce strong and identifiable signals in the northern hemisphere and, because the noise of natural variability is less, the signal-to-noise ratio can be large. The relative importance of tropical versus extratropical SST forcings has been established through numerical experiments with atmospheric general circulation models (AGCMs). Predictability of anomalous circulation and associated surface temperature and precipitation in the extratropics is somewhat limited by the difficulty of finding a modest signal embedded in the high level of noise from natural variability in the extratropics, and the complexity and variety of the possible feedbacks. Accordingly, ensembles of AGCM runs and time averaging are needed to identify signals and make predictions. Strong anomalous tropical forcing provides opportunities for skillful forecasts, and the accuracy and usefulness of forecasts is expected to improve as the ability to forecast the anomalous SSTs improves, as models improve, and as the information available from the mean and the spread of ensemble forecasts is better utilized.

1,523 citations

Journal ArticleDOI
TL;DR: In this paper, the first baroclinic gravity-wave phase speed c1 and the Rossby radius of deformation l1 are computed from climatological average temperature and salinity profiles.
Abstract: Global 1 83 18 climatologies of the first baroclinic gravity-wave phase speed c1 and the Rossby radius of deformation l1 are computed from climatological average temperature and salinity profiles. These new atlases are compared with previously published 5 83 58 coarse resolution maps of l1 for the Northern Hemisphere and the South Atlantic and with a 1 83 18 fine-resolution map of c1 for the tropical Pacific. It is concluded that the methods used in these earlier estimates yield values that are biased systematically low by 5%‐15% owing to seemingly minor computational errors. Geographical variations in the new high-resolution maps of c1 and l1 are discussed in terms of a WKB approximation that elucidates the effects of earth rotation, stratification, and water depth on these quantities. It is shown that the effects of temporal variations of the stratification can be neglected in the estimation of c1 and l1 at any particular location in the World Ocean. This is rationalized from consideration of the WKB approximation.

1,290 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed daily fields of 500-hPa heights from the National Centers for Environmental Prediction Reanalysis over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with Arctic amplification and the relaxation of poleward thickness gradients.
Abstract: [1] Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.

1,260 citations

Journal ArticleDOI
TL;DR: In this paper, a vorticity equation model is used to diagnose the relationship between tropical convective heating and the upper tropospheric rotational wind field, and it is shown that the Rossby wave source can be very different from the simple −fD source often used.
Abstract: Tropical convective heating is balanced on the large scale by the adiabatic cooling of ascent. The horizontal divergence of the wind above this heating may be viewed as driving the upper tropospheric rotational wind field. A vorticity equation model is used to diagnose this relationship. It is shown that because of the advection of vorticity by the divergent component of the flow, the Rossby wave source can be very different from the simple −fD source often used. In particular, an equatorial region of divergence situated in easterly winds can lead to a Rossby wave source in the subtropical westerlies where it is extremely effective. This part of the source can be relatively insensitive to the longitudinal position of the equatorial divergence. A divergence field which is asymmetric about the equator can lead to a quite symmetric Rossby wave source. For a steady frictionless flow the Rossby wave source averaged over regions within closed streamfunction or absolute vorticity contours is, under cert...

1,160 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Sea surface temperature
21.2K papers, 874.7K citations
88% related
Monsoon
16K papers, 599.8K citations
86% related
Solar wind
26.1K papers, 780.2K citations
83% related
Sea ice
24.3K papers, 876.6K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023271
2022424
2021209
2020217
2019181
2018185