scispace - formally typeset
Search or ask a question

Showing papers on "Rotation published in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors presented a new set of synthesis models for stellar populations obtained with Starburst99 and based on new stellar evolutionary tracks with rotation, which results in pronounced changes in the integrated spectral energy distribution of a population containing massive stars.
Abstract: We present a new set of synthesis models for stellar populations obtained with Starburst99 and based on new stellar evolutionary tracks with rotation. We discuss models with zero rotation velocity and with velocities of 40% of the break-up velocity on the zero-age main-sequence. These values are expected to bracket realistic rotation velocity distributions in stellar populations. The new rotating models for massive stars are more luminous and hotter due to a larger convective core and enhanced surface abundances. This results in pronounced changes in the integrated spectral energy distribution of a population containing massive stars. The changes are most significant at the shortest wavelengths where an increase of the ionizing luminosity by up to a factor of five is predicted. We also show that high equivalent widths of recombination lines may not necessarily indicate a very young age but can be achieved at ages as late as ~107 yr. Comparison of these two boundary cases (0% and 40% of the break-up velocity) will allow users to evaluate the effects of rotation and provide guidance for calibrating the stellar evolution models. We also introduce a new theoretical ultraviolet spectral library built from the Potsdam Wolf-Rayet atmospheres. Its purpose is to help identify signatures of Wolf-Rayet stars in the ultraviolet whose strength is sensitive to the particulars of the evolution models. The new models are available for solar and one-seventh solar metallicities. A complete suite of models can be generated on the Starburst99 Web site. The updated Starburst99 package can be retrieved from that Web site as well.

440 citations


Journal ArticleDOI
TL;DR: In this article, the rotational splittings and frequencies of the modes for six young Kepler red giants were extracted and a seismic modeling of these stars using the evolutionary codes Cesam2k and astec was performed.
Abstract: Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question.Aims. Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts.Methods. We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars.Results. We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand.Conclusions. We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches.

372 citations


Journal ArticleDOI
TL;DR: In this article, the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes was studied.
Abstract: Context. Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Aims. Our aim is to obtain seismic constraints on the internal tran sport and surface loss of angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational spli ttings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. Methods. We modified the evolutionary code CESAM2K to take rotational ly induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of 1.3M⊙ models. Rotation profiles were derived from our evolutionar y models and eigenfunctions from linear adiabatic oscillation calc ulations. Results. We find that transport by meridional circulation and shear tu rbulence yields far too high a core rotation rate for red-gia nt models compared with recent seismic observations. We discuss several uncertainties in the physical description of sta rs that could have an impact on the rotation profiles. For instance, we find t hat the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent visc osity by 2 orders of magnitude is able to significantly decrease the cen tral rotation rate on the red-giant branch. Conclusions. Our results indicate that it is possible that the prescripti on for the horizontal turbulent viscosity largely underest imates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.

294 citations


Journal ArticleDOI
TL;DR: In this paper, rotationally split core and surface p-mode triplets and quintuplets were discovered in a terminal age main-sequence A star, KIC 11145123, that shows both δ Sct pmode pulsations and γ Dor g-mode pulsations.
Abstract: We have discovered rotationally split core g-mode triplets and surface p-mode triplets and quintuplets in a terminal age main-sequence A star, KIC 11145123, that shows both δ Sct pmode pulsations and γ Dor g-mode pulsations. This gives the first robust determination of the rotation of the deep core and surface of a main-sequence star, essentially model independently. We find its rotation to be nearly uniform with a period near 100 d, but we show with high confidence that the surface rotates slightly faster than the core. A strong angular momentum transfer mechanism must be operating to produce the nearly rigid rotation, and a mechanism other than viscosity must be operating to produce a more rapidly rotating surface than core. Our asteroseismic result, along with previous asteroseismic constraints on internal rotation in some B stars, and measurements of internal rotation in some subgiant, giant and white dwarf stars, has made angular momentum transport in stars throughout their lifetimes an observational science.

234 citations


Journal ArticleDOI
TL;DR: In this paper, a three-dimensional general circulation model with a sophisticated cloud scheme was used to find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating (like Earth) planets.
Abstract: Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth’s atmosphere, in Venus’ orbit, and with modern Venus’ (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

222 citations


Journal ArticleDOI
TL;DR: In this paper, a three-dimensional general circulation model with a sophisticated cloud scheme was used to find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating (like Earth).
Abstract: Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

177 citations


Journal ArticleDOI
TL;DR: In this paper, the authors considered a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength, and gave a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind.
Abstract: Stellar winds are thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. 60 simulations made with a 2.5D, cylindrical and axisymmetric set-up and computed with the PLUTO code were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phase as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486- 4943-1) whose topology has been obtained by Zeeman-Doppler Imaging (ZDI).

175 citations


Journal ArticleDOI
TL;DR: In this paper, a generalized analysis of the relation between X-ray luminosity normalized by bolometric luminosity, L X/L bol, and combinations of rotational period, P, and stellar radius, R, was presented.
Abstract: Magnetic activity in Sun-like and low-mass stars causes X-ray coronal emission which is stronger for more rapidly rotating stars. This relation is often interpreted in terms of the Rossby number, i.e., the ratio of rotation period to convective overturn time. We reconsider this interpretation on the basis of the observed X-ray emission and rotation periods of 821 stars with masses below 1.4 M ☉. A generalized analysis of the relation between X-ray luminosity normalized by bolometric luminosity, L X/L bol, and combinations of rotational period, P, and stellar radius, R, shows that the Rossby formulation does not provide the solution with minimal scatter. Instead, we find that the relation L X/L bol∝P –2 R –4 optimally describes the non-saturated fraction of the stars. This relation is equivalent to L X∝P –2, indicating that the rotation period alone determines the total X-ray emission. Since L X is directly related to the magnetic flux at the stellar surface, this means that the surface flux is determined solely by the star's rotation and is independent of other stellar parameters. While a formulation in terms of a Rossby number would be consistent with these results if the convective overturn time scales exactly as , our generalized approach emphasizes the need to test a broader range of mechanisms for dynamo action in cool stars.

164 citations


Journal ArticleDOI
27 Jul 2014
TL;DR: An algorithm to generate designs for spinning objects by optimizing rotational dynamics properties by maximizing the dominant principal moment is presented and extended to incorporate deformation and multiple materials for cases where internal voids alone are insufficient.
Abstract: Spinning tops and yo-yos have long fascinated cultures around the world with their unexpected, graceful motions that seemingly elude gravity. We present an algorithm to generate designs for spinning objects by optimizing rotational dynamics properties. As input, the user provides a solid 3D model and a desired axis of rotation. Our approach then modifies the mass distribution such that the principal directions of the moment of inertia align with the target rotation frame. We augment the model by creating voids inside its volume, with interior fill represented by an adaptive multi-resolution voxelization. The discrete voxel fill values are optimized using a continuous, nonlinear formulation. Further, we optimize for rotational stability by maximizing the dominant principal moment. We extend our technique to incorporate deformation and multiple materials for cases where internal voids alone are insufficient. Our method is well-suited for a variety of 3D printed models, ranging from characters to abstract shapes. We demonstrate tops and yo-yos that spin surprisingly stably despite their asymmetric appearance.

160 citations


Journal ArticleDOI
TL;DR: In this paper, a rotational sensor with a wide dynamic range is designed based on tapered U-shaped resonators, which is composed of a rounded microstrip transmission line that couples to two meandered resonators that are stacked on top of each other.
Abstract: A rotation sensor with a wide dynamic range is designed based on tapered U-shaped resonators. The proposed device is composed of a rounded microstrip transmission line that couples to two meandered resonators that are stacked on top of each other. By rotating the upper resonator, the overlapping area between the two resonators is increased causing a stronger coupling that shifts down the resonance frequency of the device. This frequency shift can be read out in the transmission response from which the rotation angle is determined. The operation principle of the sensor is explained in detail by using a circuit model. A sensor prototype is designed for the microwave frequency range and an experiment is presented for validating the proposed sensing approach. This sensing device is well suited for further miniaturization using microelectromechanical systems technology.

145 citations


Journal ArticleDOI
TL;DR: In this article, the authors used axially symmetric models of the Milky Way with the 3D position and velocity information and conservative priors for the solar and average source peculiar motions.
Abstract: Over 100 trigonometric parallaxes and proper motions for masers associated with young, high-mass stars have been measured with the BeSSeL Survey, a VLBA key science project, the EVN, and the Japanese VERA project. These measurements provide strong evidence for the existence of spiral arms in the Milky Way, accurately locating many arm segments and yielding spiral pitch angles ranging from 7 to 20 degrees. The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the Milky Way with the 3-D position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, Ro, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, To, to be 240 +/- 8 km/s, and a rotation curve that is nearly flat (a slope of -0.2 +/- 0.4 km/s/kpc) between Galactocentric radii of 5 and 16 kpc. Assuming a "universal" spiral galaxy form for the rotation curve, we estimate the thin disk scale length to be 2.44 +/- 0.16 kpc. The parameters Ro and To are not highly correlated and are relatively insensitive to different forms of the rotation curve. Adopting a theoretically motivated prior that high-mass star forming regions are in nearly circular Galactic orbits, we estimate a global solar motion component in the direction of Galactic rotation, Vsun = 14.6 +/- 5.0 km/s. While To and Vsun are significantly correlated, the sum of these parameters is well constrained, To + Vsun = 255.2 +/- 5.1 km/s, as is the angular speed of the Sun in its orbit about the Galactic center, (To + Vsun)/Ro = 30.57 +/- 0.43 km/s/kpc. These parameters improve the accuracy of estimates of the accelerations of the Sun and the Hulse-Taylor binary pulsar in their Galactic orbits, significantly reducing the uncertainty in tests of gravitational radiation predicted by general relativity.

Journal ArticleDOI
TL;DR: In this article, the effect of the aspect ratio on the effective torque versus Taylor number scaling is analyzed and it is shown that different branches of the torque-versus-Taylor relationship associated to different aspect ratios are found to cross within 15 % of the Reynolds number associated to the transition to the ultimate regime.
Abstract: Direct numerical simulations of Taylor–Couette flow, i.e. the flow between two coaxial and independently rotating cylinders, were performed. Shear Reynolds numbers of up to 3×10 5 , corresponding to Taylor numbers of Ta=4.6×10 10 , were reached. Effective scaling laws for the torque are presented. The transition to the ultimate regime, in which asymptotic scaling laws (with logarithmic corrections) for the torque are expected to hold up to arbitrarily high driving, is analysed for different radius ratios, different aspect ratios and different rotation ratios. It is shown that the transition is approximately independent of the aspect and rotation ratios, but depends significantly on the radius ratio. We furthermore calculate the local angular velocity profiles and visualize different flow regimes that depend both on the shearing of the flow, and the Coriolis force originating from the outer cylinder rotation. Two main regimes are distinguished, based on the magnitude of the Coriolis force, namely the co-rotating and weakly counter-rotating regime dominated by Rayleigh-unstable regions, and the strongly counter-rotating regime where a mixture of Rayleigh-stable and Rayleigh-unstable regions exist. Furthermore, an analogy between radius ratio and outer-cylinder rotation is revealed, namely that smaller gaps behave like a wider gap with co-rotating cylinders, and that wider gaps behave like smaller gaps with weakly counter-rotating cylinders. Finally, the effect of the aspect ratio on the effective torque versus Taylor number scaling is analysed and it is shown that different branches of the torque-versus-Taylor relationships associated to different aspect ratios are found to cross within 15 % of the Reynolds number associated to the transition to the ultimate regime. The paper culminates in phase diagram in the inner versus outer Reynolds number parameter space and in the Taylor versus inverse Rossby number parameter space, which can be seen as the extension of the Andereck et al. (J. Fluid Mech., vol. 164, 1986, pp. 155–183) phase diagram towards the ultimate regime.

Journal ArticleDOI
TL;DR: In this article, a generalized analysis of the relation between X-ray luminosity normalized by bolometric luminosity, L_X/L_bol, and combinations of rotational period, P, and stellar radius, R, shows that the Rossby formulation does not provide the solution with minimal scatter.
Abstract: Magnetic activity in Sun-like and low-mass stars causes X-ray coronal emission, which is stronger for more rapidly rotating stars. This relation is often interpreted in terms of the Rossby number, i.e., the ratio of rotation period to convective overturn time. We reconsider this interpretation on the basis of the observed X-ray emission and rotation periods of 821 stars with masses below 1.4 Msun. A generalized analysis of the relation between X-ray luminosity normalized by bolometric luminosity, L_X/L_bol, and combinations of rotational period, P, and stellar radius, R, shows that the Rossby formulation does not provide the solution with minimal scatter. Instead, we find that the relation L_X/L_bol ~ P^{-2}R^{-4} optimally describes the non-saturated fraction of the stars. This relation is equivalent to L_X ~ P^{-2}, indicating that the rotation period alone determines the total X-ray emission. Since L_X is directly related to the magnetic flux at the stellar surface, this means that the surface flux is determined solely by the star's rotation and is independent of other stellar parameters. While a formulation in terms of a Rossby number would be consistent with these results if the convective overturn time scales exactly as L_bol^{-1/2}, our generalized approach emphasizes the need to test a broader range of mechanisms for dynamo action in cool stars.

Patent
03 Dec 2014
TL;DR: In this article, a power transmission system of a hybrid electric vehicle may include an input shaft, an output shaft, a first planetary gear set including a first rotation element directly connected to a first motor/generator, a second rotation element connected to the output shaft through an externally-meshed gear and a third rotation element connecting to the input shaft.
Abstract: A power transmission system of a hybrid electric vehicle may include an input shaft, an output shaft, a first planetary gear set including a first rotation element directly connected to a first motor/generator, a second rotation element connected to the output shaft through an externally-meshed gear and a third rotation element directly connected to the input shaft, a second planetary gear set including a fourth rotation element directly connected to a second motor/generator, a fifth rotation element connected to the output shaft through an externally-meshed gear and a sixth rotation element selectively connected to a transmission housing and selectively connected to the first rotation element, transfer gears forming the externally-meshed gears, and frictional elements selectively connecting two rotation elements of the second planetary gear set, selectively connecting the first rotation element to the sixth rotation element, or selectively connecting the sixth rotation element to the transmission housing

Journal ArticleDOI
TL;DR: In this article, the authors study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator and fast poles).
Abstract: Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims. We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (A effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods. We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the luminosity by a factor of roughly 106 and the rotation rate by a factor of 10(2). We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results. Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions. Conclusions. Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main-sequence evolution. As they slow down, they might be able to retain solar-like rotation for lower Coriolis numbers, and thus longer in time, before switching to anti-solar rotation. This could partially explain the puzzling findings of anti-solar rotation profiles for models in the solar parameter regime.

Journal ArticleDOI
TL;DR: It is shown that rotation reinforces the inverse cascade at the expense of the direct one, thus promoting bidimensionalization of the flow, and the results suggest that, even in rotating flows, the inverted cascade may eventually disappear when the vertical scale is sufficiently large with respect to the forcing scale.
Abstract: In this work we investigate, by means of direct numerical hyperviscous simulations, how rotation affects the bidimensionalization of a turbulent flow. We study a thin layer of fluid, forced by a two-dimensional forcing, within the framework of the "split cascade" in which the injected energy flows both to small scales (generating the direct cascade) and to large scale (to form the inverse cascade). It is shown that rotation reinforces the inverse cascade at the expense of the direct one, thus promoting bidimensionalization of the flow. This is achieved by a suppression of the enstrophy production at large scales. Nonetheless, we find that, in the range of rotation rates investigated, increasing the vertical size of the computational domain causes a reduction of the flux of the inverse cascade. Our results suggest that, even in rotating flows, the inverse cascade may eventually disappear when the vertical scale is sufficiently large with respect to the forcing scale. We also study how the split cascade and confinement influence the breaking of symmetry induced by rotation.

Journal ArticleDOI
TL;DR: In this article, the authors derived a prograde rotation model with spin vector J2000 ecliptic coordinates λ = 65° ± 15°, β = + 59° ± 14°, corresponding to equatorial coordinates RA = 22°, Dec = + 76°.
Abstract: Aims: Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P's nucleus. Methods: Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results: Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P1 = 12.76129 ± 0.00005 h and P2 = 12.4043 ± 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates λ = 65° ± 15°, β = + 59° ± 15°, corresponding to equatorial coordinates RA = 22°, Dec = + 76°. However, we find that the mirror solution, also prograde, at λ = 275° ± 15°, β = + 50° ± 15° (or RA = 274°, Dec = + 27°), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane. Table 1 is available in electronic form at http://www.aanda.org

Journal ArticleDOI
TL;DR: In this article, the impact of the symmetry breaking caused by the forced rotation on the vortex-induced vibration (VIV) mechanisms is investigated for a Reynolds number equal to 100, based on the cylinder diameter and inflow velocity.
Abstract: The flow-induced vibrations of a circular cylinder, free to oscillate in the cross-flow direction and subjected to a forced rotation about its axis, are analysed by means of two- and three-dimensional numerical simulations. The impact of the symmetry breaking caused by the forced rotation on the vortex-induced vibration (VIV) mechanisms is investigated for a Reynolds number equal to 100, based on the cylinder diameter and inflow velocity. The cylinder is found to oscillate freely up to a rotation rate (ratio between the cylinder surface and inflow velocities) close to 4. Under forced rotation, the vibration amplitude exhibits a bell-shaped evolution as a function of the reduced velocity (inverse of the oscillator natural frequency) and reaches 1.9 diameters, i.e. three times the maximum amplitude in the non-rotating case. The free vibrations of the rotating cylinder occur under a condition of wake–body synchronization similar to the lock-in condition driving non-rotating cylinder VIV. The largest vibration amplitudes are associated with a novel asymmetric wake pattern composed of a triplet of vortices and a single vortex shed per cycle, the TCS pattern. In the low-frequency vibration regime, the flow exhibits another new topology, the U pattern, characterized by a transverse undulation of the spanwise vorticity layers without vortex detachment; consequently, free oscillations of the rotating cylinder may also develop in the absence of vortex shedding. The symmetry breaking due to the rotation is shown to directly impact the selection of the higher harmonics appearing in the fluid force spectra. The rotation also influences the mechanism of phasing between the force and the structural response.

Journal ArticleDOI
TL;DR: Investigating the dynamics of a 3D dimer bouncing upon a horizontal plate undergoing a vertical harmonic vibration indicates that the coefficient of restitution and the plate's vibration intensity play critical roles in exciting the circular orbit, while the dimer's geometry and the vibration frequency mainly influence the trajectory characteristics.
Abstract: This work studies the dynamics of a 3D dimer bouncing upon a horizontal plate undergoing a vertical harmonic vibration. Despite complex interactions within the system due to impacts and friction, numerical simulation shows that, under certain conditions prescribed for the dynamics, the center of mass of the dimer, when projected onto a horizontal plane, will follow a circular orbit. The phenomenon is like a particle under Coulomb friction performing a ratchet motion that rotates around. Investigations further reveal that the dimer dynamics bear some typical characteristics of a nonlinear system, including sensitivity to the initial conditions and bifurcation behaviors related to the physical parameters of the dynamics. Our results indicate that the coefficient of restitution and the plate's vibration intensity play critical roles in exciting the circular orbit, while the dimer's geometry and the vibration frequency mainly influence the trajectory characteristics. These findings may help understand transport mechanisms underlying systems of granular matter with anisotropic particles.

Patent
03 Sep 2014
TL;DR: In this paper, a user interface can be manipulated on a wearable electronic device using a mechanical crown, which can be scrolled or scaled in response to a rotation of the crown.
Abstract: The present disclosure relates to manipulating a user interface on a wearable electronic device using a mechanical crown. In some examples, the user interface can be scrolled or scaled in response to a rotation of the crown. The direction of the scrolling or scaling and the amount of scrolling or scaling can depend on the direction and amount of rotation of the crown, respectively. In some examples, the amount of scrolling or scaling can be proportional to the change in rotation angle of the crown. In other examples, a speed of scrolling or a speed of scaling can depend on a speed of angular rotation of the crown. In these examples, a greater speed of rotation can cause a greater speed of scrolling or scaling to be performed on the displayed view.

Journal ArticleDOI
TL;DR: In this article, a review of the driving and damping mechanisms of poloidal and toroidal rotation are outlined, and the experimental results of investigations of these ND terms are described.
Abstract: Poloidal and toroidal rotation has been recognized to play an important role in heat transport and magnetohydrodynamic (MHD) stability in tokamaks and helical systems. It is well known that the E × B shear due to poloidal and toroidal flow suppresses turbulence in the plasma and contributes to the improvement of heat and particle transport, while toroidal rotation helps one to stabilize MHD instabilities such as resistive wall modes and neoclassical tearing mode. Therefore, understanding the role of momentum transport in determining plasma rotation is crucial in toroidal discharges, both in tokamaks and helical systems. In this review paper, the driving and damping mechanisms of poloidal and toroidal rotation are outlined. Driving torque due to neutral beam injection and radio-frequency waves, and damping due to parallel viscosity and neoclassical toroidal viscosity (NTV) are described. Regarding momentum transport, the radial flux of momentum has diffusive and non-diffusive (ND) terms, and experimental investigations of these are discussed. The magnitude of the diffusive term of momentum transport is expressed as a coefficient of viscous diffusivity. The ratio of the viscous diffusivity to the thermal diffusivity (Prandtl number) is one of the interesting parameters in plasma physics. It is typically close to unity, but sometimes can deviate significantly depending on the turbulent state. The ND terms have two categories: one is the so-called momentum pinch, whose magnitude is proportional to (or at least depends on) the velocity itself, and the other is an off-diagonal term in which the magnitude is proportional to (or at least depends on) the temperature or/and pressure gradient, independent of the velocity or its gradient. The former has no sign dependence; rotation due to the momentum pinch does not depend on the sign of the rotation itself, whether it is parallel to the plasma current (co-direction) or anti-parallel to the plasma current (counter-direction). In contrast, the latter has a sign dependence; the rotation due to the off-diagonal residual term is either in the co- or counter-direction depending on the turbulence state, but not on the sign of the rotation itself. This residual term can also act as a momentum source for intrinsic rotation. The experimental results of investigations of these ND terms are described. Finally the current understanding of the mechanisms behind the ND terms in momentum transport, and predictions of intrinsic rotation driven by these terms are reviewed.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the steady MHD laminar flow of an electrically conducting fluid on a radially shrinking rotating disk in the presence of a uniform vertical magnetic field.

Journal ArticleDOI
TL;DR: The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity.
Abstract: F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank).

Journal ArticleDOI
TL;DR: In this article, a survey of the central kinematics of Galactic GCs using the Integral Field Unit instrument VIRUS-W was conducted, and it was shown that the central ellipticity and position angles are in excellent agreement with the kinematic position angles that were derived from the velocity fields.
Abstract: Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.

Journal ArticleDOI
TL;DR: An alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation is presented.
Abstract: The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

Journal ArticleDOI
TL;DR: In this paper, a universal relation between moment of inertia and quadrupole moment of arbitrarily fast rotating neutron stars was considered and it was shown that it is still universal among various suggested equations of state for constant values of certain dimensionless parameters characterizing the magnitude of rotation.
Abstract: We consider a universal relation between moment of inertia and quadrupole moment of arbitrarily fast rotating neutron stars. Recent studies suggest that this relation breaks down for fast rotation. We find that it is still universal among various suggested equations of state for constant values of certain dimensionless parameters characterizing the magnitude of rotation. One of these parameters includes the neutron star radius, leading to a new universal relation expressing the radius through the mass, frequency, and spin parameter. This can become a powerful tool for radius measurements.

Journal ArticleDOI
TL;DR: In this article, the authors study charged-fluid toroidal structures surrounding a nonrotating charged black hole immersed in a large-scale, asymptotically uniform magnetic field.
Abstract: We study charged-fluid toroidal structures surrounding a nonrotating charged black hole immersed in a large-scale, asymptotically uniform magnetic field. In continuation of our former study on electrically charged matter in approximation of zero conductivity, we demonstrate the existence of orbiting structures in permanent rigid rotation in the equatorial plane and charged clouds hovering near the symmetry axis. We constrain the range of parameters that allow stable configurations and derive the geometrical shape of equipressure surfaces. Our simplified analytical study suggests that these regions of stability may be relevant for trapping electrically charged particles and dust grains in some areas of the black hole magnetosphere and thus important in some astrophysical situations.

Journal ArticleDOI
TL;DR: In this paper, the authors observed the rotation and radial velocities of the gas and stars as a function of the distance from our assumed location of the observer at the three lines of sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150, 0).
Abstract: We have observed a snapshot of our N-body/smoothed particle hydrodynamics simulation of a Milky Way-sized barred spiral galaxy in a similar way to how we can observe the Milky Way. The simulated galaxy shows a corotating spiral arm, i.e. the spiral arm rotates with the same speed as the circular speed. We observed the rotation and radial velocities of the gas and stars as a function of the distance from our assumed location of the observer at the three lines of sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150, 0) deg. We find that the stars tend to rotate slower (faster) behind (at the front of) the spiral arm and move outwards (inwards), because of the radial migration. However, because of their epicycle motion, we see a variation of rotation and radial velocities around the spiral arm. On the other hand, the cold gas component shows a clearer trend of rotating slower (faster) and moving outwards (inwards) behind (at the front of) the spiral arm, because of the radial migration. We have compared the results with the velocity of the maser sources from Reid et al., and find that the observational data show a similar trend in the rotation velocity around the expected position of the spiral arm at l = 120 deg. We also compared the distribution of the radial velocity from the local standard of the rest, V, with the Apache Point Observatory Galactic Evolution Experiment (APOGEE) data at l = 90 deg as an example. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Journal ArticleDOI
TL;DR: In this paper, the authors used a three-dimensional General Circulation Model to solve for the atmospheric structure of two hot Jupiters (HD 189733b and HD 209458b), assuming rotation periods that are 0.5, 1, or 2 times their orbital periods (2.2 and 3.3 days, respectively).
Abstract: We study the feasibility of observationally constraining the rotation rate of hot Jupiters, planets that are typically assumed to have been tidally locked into synchronous rotation. We use a three-dimensional General Circulation Model to solve for the atmospheric structure of two hot Jupiters (HD 189733b and HD 209458b), assuming rotation periods that are 0.5, 1, or 2 times their orbital periods (2.2 and 3.3 days, respectively), including the effect of variable stellar heating. We compare two observable properties: (1) the spatial variation of flux emitted by the planet, measurable in orbital phase curves, and (2) the net Doppler shift in transmission spectra of the atmosphere, which is tantalizingly close to being measurable in high-resolution transit spectra. Although we find little difference between the observable properties of the synchronous and non-synchronous models of HD 189733b, we see significant differences when we compare the models of HD 209458b. In particular, the slowly rotating model of HD 209458b has an atmospheric circulation pattern characterized by westward flow and an orbital phase curve that peaks after secondary eclipse (in contrast to all of our other models), while the quickly rotating model has a net Doppler shift that is more strongly blueshifted than the othermore » models. Our results demonstrate that the combined use of these two techniques may be a fruitful way to constrain the rotation rate of some planets and motivate future work on this topic.« less

Journal ArticleDOI
TL;DR: In this paper, the effect of a dynamo-generated magnetic field on the large-scale flows, particularly on the possibility of bistable behavior of differential rotation, was studied, and it was shown that magnetic fields, self-consistently generated by dynamo action, significantly affect the flows.
Abstract: Late-type stars rotate differentially owing to anisotropic turbulence in their outer convection zones. The rotation is called solar-like (SL) when the equator rotates fastest and anti-solar (AS) otherwise. Hydrodynamic simulations show a transition from SL to AS rotation as the influence of rotation on convection is reduced, but the opposite transition occurs at a different point in the parameter space. The system is bistable, i.e., SL and AS rotation profiles can both be stable. We study the effect of a dynamo-generated magnetic field on the large-scale flows, particularly on the possibility of bistable behavior of differential rotation. We solve the hydromagnetic equations numerically in a rotating spherical shell for a set of different radiative conductivities controlling the relative importance of convection. In agreement with earlier findings, our models display SL rotation profiles when the rotational influence on convection is strong and a transition to AS when the rotational influence decreases. We find that dynamo-generated magnetic fields help to produce SL differential rotation compared to the hydrodynamic simulations. We do not observe any bistable states of differential rotation. In the AS cases we get coherent single-cell meridional circulation, whereas in SL cases we get multi-cellular patterns. In both cases, we obtain poleward circulation near the surface with a magnitude close to that observed in the Sun. Moreover, both differential rotation and meridional circulation have significant magnetic cycle-related variations that are similar in strength to those of the Sun. Purely hydrodynamic simulations of differential rotation and meridional circulation are shown to be of limited relevance as magnetic fields, self-consistently generated by dynamo action, significantly affect the flows.