scispace - formally typeset
Search or ask a question

Showing papers on "Routing protocol published in 2006"


Proceedings ArticleDOI
23 Apr 2006
TL;DR: The evaluations show that MaxProp performs better than protocols that have access to an oracle that knows the schedule of meetings between peers, and performs well in a wide variety of DTN environments.
Abstract: Disruption-tolerant networks (DTNs) attempt to route network messages via intermittently connected nodes. Routing in such environments is difficult because peers have little information about the state of the partitioned network and transfer opportunities between peers are of limited duration. In this paper, we propose MaxProp, a protocol for effective routing of DTN messages. MaxProp is based on prioritizing both the schedule of packets transmitted to other peers and the schedule of packets to be dropped. These priorities are based on the path likelihoods to peers according to historical data and also on several complementary mechanisms, including acknowledgments, a head-start for new packets, and lists of previous intermediaries. Our evaluations show that MaxProp performs better than protocols that have access to an oracle that knows the schedule of meetings between peers. Our evaluations are based on 60 days of traces from a real DTN network we have deployed on 30 buses. Our network, called UMassDieselNet, serves a large geographic area between five colleges. We also evaluate MaxProp on simulated topologies and show it performs well in a wide variety of DTN environments.

2,148 citations


Journal ArticleDOI
TL;DR: The most interesting case studies related to opportunistic networking are surveyed and a taxonomy for the main routing and forwarding approaches in this challenging environment is discussed and organized.
Abstract: Opportunistic networks are one of the most interesting evolutions of MANETs. In opportunistic networks, mobile nodes are enabled to communicate with each other even if a route connecting them never exists. Furthermore, nodes are not supposed to possess or acquire any knowledge about the network topology, which (instead) is necessary in traditional MANET routing protocols. Routes are built dynamically, while messages are en route between the sender and the destination(s), and any possible node can opportunistically be used as next hop, provided it is likely to bring the message closer to the final destination. These requirements make opportunistic networks a challenging and promising research field. In this article we survey the most interesting case studies related to opportunistic networking and discuss and organize a taxonomy for the main routing and forwarding approaches in this challenging environment. We finally envision further possible scenarios to make opportunistic networks part of the next-generation Internet

1,201 citations


Journal ArticleDOI
TL;DR: An overview of highway cooperative collision avoidance (CCA), which is an emerging vehicular safety application using the IEEE- and ASTM-adopted Dedicated Short Range Communication (DSRC) standard, and an example of the safety performance of CCA using simulated vehicle crash experiments.
Abstract: This article presents an overview of highway cooperative collision avoidance (CCA), which is an emerging vehicular safety application using the IEEE- and ASTM-adopted Dedicated Short Range Communication (DSRC) standard. Along with a description of the DSRC architecture, we introduce the concept of CCA and its implementation requirements in the context of a vehicle-to-vehicle wireless network, primarily at the Medium Access Control (MAC) and the routing layer. An overview is then provided to establish that the MAC and routing protocols from traditional Mobile Ad Hoc networks arc not directly applicable for CCA and similar safety-critical applications. Specific constraints and future research directions are then identified for packet routing protocols used to support such applications in the DSRC environment. In order to further explain the interactions between CCA and its underlying networking protocols, we present an example of the safety performance of CCA using simulated vehicle crash experiments. The results from these experiments arc also used to demonstrate the need for network data prioritization for safety-critical applications such as CCA. Finally, the performance sensitivity of CCA to unreliable wireless channels is discussed based on the experimental results.

920 citations


Journal ArticleDOI
TL;DR: Simulation results show that MMSPEED provides QoS differentiation in both reliability and timeliness domains and, as a result, significantly improves the effective capacity of a sensor network in terms of number of flows that meet both reliabilityand timelier requirements up to 50 percent.
Abstract: In this paper, we present a novel packet delivery mechanism called Multi-Path and Multi-SPEED Routing Protocol (MMSPEED) for probabilistic QoS guarantee in wireless sensor networks. The QoS provisioning is performed in two quality domains, namely, timeliness and reliability. Multiple QoS levels are provided in the timeliness domain by guaranteeing multiple packet delivery speed options. In the reliability domain, various reliability requirements are supported by probabilistic multipath forwarding. These mechanisms for QoS provisioning are realized in a localized way without global network information by employing localized geographic packet forwarding augmented with dynamic compensation, which compensates for local decision inaccuracies as a packet travels towards its destination. This way, MMSPEED can guarantee end-to-end requirements in a localized way, which is desirable for scalability and adaptability to large scale dynamic sensor networks. Simulation results show that MMSPEED provides QoS differentiation in both reliability and timeliness domains and, as a result, significantly improves the effective capacity of a sensor network in terms of number of flows that meet both reliability and timeliness requirements up to 50 percent (12 flows versus 18 flows).

863 citations


Journal ArticleDOI
TL;DR: Simulations show that adding gossiping to AODV results in significant performance improvement, even in networks as small as 150 nodes, and suggest that the improvement should be even more significant in larger networks.
Abstract: Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations of flooding, many routing messages are propagated unnecessarily. We propose a gossiping-based approach, where each node forwards a message with some probability, to reduce the overhead of the routing protocols. Gossiping exhibits bimodal behavior in sufficiently large networks: in some executions, the gossip dies out quickly and hardly any node gets the message; in the remaining executions, a substantial fraction of the nodes gets the message. The fraction of executions in which most nodes get the message depends on the gossiping probability and the topology of the network. In the networks we have considered, using gossiping probability between 0.6 and 0.8 suffices to ensure that almost every node gets the message in almost every execution. For large networks, this simple gossiping protocol uses up to 35% fewer messages than flooding, with improved performance. Gossiping can also be combined with various optimizations of flooding to yield further benefits. Simulations show that adding gossiping to AODV results in significant performance improvement, even in networks as small as 150 nodes. Our results suggest that the improvement should be even more significant in larger networks

828 citations


Journal ArticleDOI
TL;DR: This paper introduces the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against, and presents a general mechanism, called packet leashes, for detecting and, thus defending against wormhole attacks, and a specific protocol that implements leashes.
Abstract: As mobile ad hoc network applications are deployed, security emerges as a central requirement. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts, and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them (possibly selectively) to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many ad hoc network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a general mechanism, called packet leashes, for detecting and, thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes. We also discuss topology-based wormhole detection, and show that it is impossible for these approaches to detect some wormhole topologies.

724 citations


Book ChapterDOI
15 May 2006
TL;DR: This paper proposes a novel routing protocol, called vector-based forwarding (VBF), to provide robust, scalable and energy efficient routing in Underwater Sensor Networks (UWSNs).
Abstract: In this paper, we tackle one fundamental problem in Underwater Sensor Networks (UWSNs): robust, scalable and energy efficient routing. UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node float mobility (resulting in high network dynamics), high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we propose a novel routing protocol, called vector-based forwarding (VBF), to provide robust, scalable and energy efficient routing. VBF is essentially a position-based routing approach: nodes close to the “vector” from the source to the destination will forward the message. In this way, only a small fraction of the nodes are involved in routing. VBF also adopts a localized and distributed self-adaptation algorithm which allows nodes to weigh the benefit of forwarding packets and thus reduce energy consumption by discarding the low benefit packets. Through simulation experiments, we show the promising performance of VBF.

688 citations


Journal ArticleDOI
TL;DR: AOMDV as discussed by the authors is an on-demand, multipath distance vector routing protocol for mobile ad hoc networks, which guarantees loop freedom and disjointness of alternate paths.
Abstract: We develop an on-demand, multipath distance vector routing protocol for mobile ad hoc networks. Specifically, we propose multipath extensions to a well-studied single path routing protocol known as ad hoc on-demand distance vector (AODV). The resulting protocol is referred to as ad hoc on-demand multipath distance vector (AOMDV). The protocol guarantees loop freedom and disjointness of alternate paths. Performance comparison of AOMDV with AODV using ns-2 simulations shows that AOMDV is able to effectively cope with mobility-induced route failures. In particular, it reduces the packet loss by up to 40% and achieves a remarkable improvement in the end-to-end delay (often more than a factor of two). AOMDV also reduces routing overhead by about 30% by reducing the frequency of route discovery operations. Copyright © 2006 John Wiley & Sons, Ltd.

625 citations


Proceedings ArticleDOI
01 Jan 2006
TL;DR: A realistic power consumption model of wireless communication subsystems typically used in many sensor network node devices is presented and it is shown that whenever single hop routing is possible it is almost always more power efficient than multi-hop routing.
Abstract: A realistic power consumption model of wireless communication subsystems typically used in many sensor network node devices is presented. Simple power consumption models for major components are individually identified, and the effective transmission range of a sensor node is modeled by the output power of the transmitting power amplifier, sensitivity of the receiving low noise amplifier, and RF environment. Using this basic model, conditions for minimum sensor network power consumption are derived for communication of sensor data from a source device to a destination node. Power consumption model parameters are extracted for two types of wireless sensor nodes that are widely used and commercially available. For typical hardware configurations and RF environments, it is shown that whenever single hop routing is possible it is almost always more power efficient than multi-hop routing. Further consideration of communication protocol overhead also shows that single hop routing will be more power efficient compared to multi-hop routing under realistic circumstances. This power consumption model can be used to guide design choices at many different layers of the design space including, topology design, node placement, energy efficient routing schemes, power management and the hardware design of future wireless sensor network devices

501 citations


Proceedings ArticleDOI
30 Nov 2006
TL;DR: Simulations based on a realistic radio model of MICA2 motes show that RPAR significantly reduces the number of deadlines missed and energy consumption compared to existing real-time and energy-efficient routing protocols.
Abstract: Many wireless sensor network applications must resolve the inherent conflict between energy efficient communication and the need to achieve desired quality of service such as end-to-end communication delay. To address this challenge, we propose the Real-time Power-Aware Routing (RPAR) protocol, which achieves application-specified communication delays at low energy cost by dynamically adapting transmission power and routing decisions. RPAR features a power-aware forwarding policy and an efficient neighborhood manager that are optimized for resource-constrained wireless sensors. Moreover, RPAR addresses important practical issues in wireless sensor networks, including lossy links, scalability, and severe memory and bandwidth constraints. Simulations based on a realistic radio model of MICA2 motes show that RPAR significantly reduces the number of deadlines missed and energy consumption compared to existing real-time and energy-efficient routing protocols.

450 citations


Journal ArticleDOI
TL;DR: This paper presents a class of algorithms that can be implemented at the sources to stably and optimally split the flow between each source-destination pair and shows that the connection-level throughput region of such multi-path routing/congestion control algorithms can be larger than that of a single-path congestion control scheme.
Abstract: We consider the problem of congestion-aware multi-path routing in the Internet. Currently, Internet routing protocols select only a single path between a source and a destination. However, due to many policy routing decisions, single-path routing may limit the achievable throughput. In this paper, we envision a scenario where multi-path routing is enabled in the Internet to take advantage of path diversity. Using minimal congestion feedback signals from the routers, we present a class of algorithms that can be implemented at the sources to stably and optimally split the flow between each source-destination pair. We then show that the connection-level throughput region of such multi-path routing/congestion control algorithms can be larger than that of a single-path congestion control scheme.

Journal ArticleDOI
11 Aug 2006
TL;DR: The experimental results show that VRR provides robust performance across a wide range of environments and workloads, and performs comparably to, or better than, the best wireless routing protocol in each experiment.
Abstract: This paper presents Virtual Ring Routing (VRR), a new network routing protocol that occupies a unique point in the design space. VRR is inspired by overlay routing algorithms in Distributed Hash Tables (DHTs) but it does not rely on an underlying network routing protocol. It is implemented directly on top of the link layer. VRR provides both raditional point-to-point network routing and DHT routing to the node responsible for a hash table key.VRR can be used with any link layer technology but this paper describes a design and several implementations of VRR that are tuned for wireless networks. We evaluate the performance of VRR using simulations and measurements from a sensor network and an 802.11a testbed. The experimental results show that VRR provides robust performance across a wide range of environments and workloads. It performs comparably to, or better than, the best wireless routing protocol in each experiment. VRR performs well because of its unique features: it does not require network flooding or trans-lation between fixed identifiers and location-dependent addresses.

Journal ArticleDOI
TL;DR: This work investigates the number of packets of each node depending on its degree in the free flow state and observes the power law behavior to indicate that some fundamental relationships exist between the dynamics of synchronization and traffic on the scale-free networks.
Abstract: We propose a packet routing strategy with a tunable parameter based on the local structural information of a scale-free network. As free traffic flow on the communication networks is key to their normal and efficient functioning, we focus on the network capacity that can be measured by the critical point of phase transition from free flow to congestion. Simulations show that the maximal capacity corresponds to alpha= -1 in the case of identical nodes' delivering ability. To explain this, we investigate the number of packets of each node depending on its degree in the free flow state and observe the power law behavior. Other dynamic properties including average packets traveling time and traffic load are also studied. Inspiringly, our results indicate that some fundamental relationships exist between the dynamics of synchronization and traffic on the scale-free networks.

Journal ArticleDOI
TL;DR: INSENS as discussed by the authors is a tree-structured routing protocol for WSNs that is designed to tolerate damage caused by an intruder who has compromised deployed sensor nodes and is intent on injecting, modifying, or blocking packets.

Proceedings ArticleDOI
24 Jul 2006
TL;DR: Analytical models based on queuing theory are developed for DyXY routing for a two-dimensional mesh NoC architecture, and analytical results match very well with the simulation results.
Abstract: A novel routing algorithm, namely dynamic XY (DyXY) routing, is proposed for NoCs to provide adaptive routing and ensure deadlock-free and livelock-free routing at the same time.A new router architecture is developed to support the routing algorithm.Analytical models based on queuing theory are developed for DyXY routing for a two-dimensional mesh NoC architecture,and analytical results match very well with the simulation results.It is observed that DyXY routing can achieve better performance compared with static XY routing and odd-even routing.

Proceedings ArticleDOI
23 Apr 2006
TL;DR: It is shown that routing based on MobySpace can achieve good performance compared to that of a number of standard algorithms, especially for nodes that are present in the network a large portion of the time, and the degree of homogeneity of node mobility patterns has a high impact on routing.
Abstract: Because a delay tolerant network (DTN) can often be partitioned, routing is a challenge. However, routing benefits considerably if one can take advantage of knowledge concerning node mobility. This paper addresses this problem with a generic algorithm based on the use of a high-dimensional Euclidean space, that we call MobySpace, constructed upon nodes' mobility patterns. We provide here an analysis and a large scale evaluation of this routing scheme in the context of ambient networking by replaying real mobility traces. The specific MobySpace evaluated is based on the frequency of visits of nodes to each possible location. We show that routing based on MobySpace can achieve good performance compared to that of a number of standard algorithms, especially for nodes that are present in the network a large portion of the time. We determine that the degree of homogeneity of node mobility patterns has a high impact on routing. And finally, we study the ability of nodes to learn their own mobility patterns.

Book ChapterDOI
04 Sep 2006
TL;DR: In this article, the authors presented a new wireless sensor network routing protocol based on the Ant Colony Optimization metaheuristic, which is studied by simulation for several Wireless Sensor Network scenarios and the results clearly show that it minimises communication load and maximises energy savings.
Abstract: Wireless Sensor Networks are characterized by having specific requirements such as limited energy availability, low memory and reduced processing power. On the other hand, these networks have enormous potential applicability, e.g., habitat monitoring, medical care, military surveillance or traffic control. Many protocols have been developed for Wireless Sensor Networks that try to overcome the constraints that characterize this type of networks. Ant-based routing protocols can add a significant contribution to assist in the maximisation of the network lifetime, but this is only possible by means of an adaptable and balanced algorithm that takes into account the Wireless Sensor Networks main restrictions. This paper presents a new Wireless Sensor Network routing protocol, which is based on the Ant Colony Optimization metaheuristic. The protocol was studied by simulation for several Wireless Sensor Network scenarios and the results clearly show that it minimises communication load and maximises energy savings.

Proceedings ArticleDOI
29 Sep 2006
TL;DR: Using a mathematical formulation, synchronized TDMA link schedulings that optimize the networking throughput are developed that are both efficient centralized and distributed algorithms that use time slots within a constant factor of the optimum.
Abstract: We study efficient link scheduling for a multihop wireless network to maximize its throughput. Efficient link scheduling can greatly reduce the interference effect of close-by transmissions. Unlike the previous studies that often assume a unit disk graph model, we assume that different terminals could have different transmission ranges and different interference ranges. In our model, it is also possible that a communication link may not exist due to barriers or is not used by a predetermined routing protocol, while the transmission of a node always result interference to all non-intended receivers within its interference range. Using a mathematical formulation, we develop synchronized TDMA link schedulings that optimize the networking throughput. Specifically, by assuming known link capacities and link traffic loads, we study link scheduling under the RTS/CTS interference model and the protocol interference model with fixed transmission power. For both models, we present both efficient centralized and distributed algorithms that use time slots within a constant factor of the optimum. We also present efficient distributed algorithms whose performances are still comparable with optimum, but with much less communications. Our theoretical results are corroborated by extensive simulation studies.

Journal ArticleDOI
TL;DR: A modeling, simulation, and emulation framework for WSNs in J-Sim - an open source, component-based compositional network simulation environment developed entirely in Java that provides an object-oriented definition of target, sensor, and sink nodes, sensor and wireless communication channels, and physical media such as seismic channels, mobility models, and power models.
Abstract: Wireless sensor networks have gained considerable attention in the past few years. They have found application domains in battlefield communication, homeland security, pollution sensing, and traffic monitoring. As such, there has been an increasing need to define and develop simulation frameworks for carrying out high-fidelity WSN simulation. In this article we present a modeling, simulation, and emulation framework for WSNs in J-Sim - an open source, component-based compositional network simulation environment developed entirely in Java. This framework is built on the autonomous component architecture and extensible internetworking framework of J-Sim, and provides an object-oriented definition of target, sensor, and sink nodes, sensor and wireless communication channels, and physical media such as seismic channels, mobility models, and power models (both energy-producing and energy-consuming components). Application-specific models can be defined by subclassing classes in the simulation framework and customizing their behaviors. We also include in J-Sim a set of classes and mechanisms to realize network emulation. We demonstrate the use of the proposed WSN simulation framework by implementing several well-known localization, geographic routing, and directed diffusion protocols, and perform performance comparisons (in terms of the execution time incurred and memory used) in simulating WSN scenarios in J-Sim and ns-2. The simulation study indicates the WSN framework in J-Sim is much more scalable than ns-2 (especially in memory usage). We also demonstrate the use of the WSN framework in carrying out real-life full-fledged Future Combat System (FCS) simulation and emulation

Book ChapterDOI
18 Jun 2006
TL;DR: In this article, the authors investigate the approach that makes use of a mobile sink for balancing the traffic load and in turn improving network lifetime, and propose a routing protocol, MobiRoute, that effectively supports sink mobility.
Abstract: Improving network lifetime is a fundamental challenge of wireless sensor networks. One possible solution consists in making use of mobile sinks. Whereas theoretical analysis shows that this approach does indeed benefit network lifetime, practical routing protocols that support sink mobility are still missing. In this paper, in line with our previous efforts, we investigate the approach that makes use of a mobile sink for balancing the traffic load and in turn improving network lifetime. We engineer a routing protocol, MobiRoute, that effectively supports sink mobility. Through intensive simulations in TOSSIM with a mobile sink and an implementation of MobiRoute, we prove the feasibility of the mobile sink approach by demonstrating the improved network lifetime in several deployment scenarios.

Journal ArticleDOI
11 Aug 2006
TL;DR: An initial stab at the ROFL routing algorithm, proposing and analyzing its scaling and efficiency properties, and suggesting that the idea of routing on flat labels cannot be immediately dismissed.
Abstract: It is accepted wisdom that the current Internet architecture conflates network locations and host identities, but there is no agreement on how a future architecture should distinguish the two. One could sidestep this quandary by routing directly on host identities themselves, and eliminating the need for network-layer protocols to include any mention of network location. The key to achieving this is the ability to route on flat labels. In this paper we take an initial stab at this challenge, proposing and analyzing our ROFL routing algorithm. While its scaling and efficiency properties are far from ideal, our results suggest that the idea of routing on flat labels cannot be immediately dismissed.

Journal ArticleDOI
11 Aug 2006
TL;DR: A multi-path inter-domain routing protocol called MIRO is presented that offers substantial flexiility, while giving transit domains control over the flow of traffic through their infrastructure and avoiding state explosion in disseminating reachability information.
Abstract: The Internet consists of thousands of independent domains with different, and sometimes competing, business interests. However, the current interdomain routing protocol (BGP) limits each router to using a single route for each destination prefix, which may not satisfy the diverse requirements of end users. Recent proposals for source routing offer an alternative where end hosts or edge routers select the end-to-end paths. However, source routing leaves transit domains with very little control and introduces difficult scalability and security challenges. In this paper, we present a multi-path inter-domain routing protocol called MIRO that offers substantial flexiility, while giving transit domains control over the flow of traffic through their infrastructure and avoiding state explosion in disseminating reachability information. In MIRO, routers learn default routes through the existing BGP protocol, and arbitrary pairs of domains can negotiate the use of additional paths (bound to tunnels in the data plane) tailored to their special needs. MIRO retains the simplicity of BGP for most traffic, and remains backwards compatible with BGP to allow for incremental deployability. Experiments with Internet topology and routing data illustrate that MIRO offers tremendous flexibility for path selection with reasonable overhead.

Journal ArticleDOI
TL;DR: In this article, the authors present an approach that conceals sensed data end-to-end while still providing efficient and flexible in-network data aggregation, where the aggregating intermediate nodes are not required to operate on the sensed plaintext data.
Abstract: Routing in wireless sensor networks is different from that in commonsense mobile ad-hoc networks. It mainly needs to support reverse multicast traffic to one particular destination in a multihop manner. For such a communication pattern, end-to-end encryption is a challenging problem. To save the overall energy resources of the network, sensed data needs to be consolidated and aggregated on its way to the final destination. We present an approach that 1) conceals sensed data end-to-end by 2) still providing efficient and flexible in-network data aggregation. The aggregating intermediate nodes are not required to operate on the sensed plaintext data. We apply a particular class of encryption transformations and discuss techniques for computing the aggregation functions "average" and "movement detection." We show that the approach is feasible for the class of "going down" routing protocols. We consider the risk of corrupted sensor nodes by proposing a key predistribution algorithm that limits an attacker's gain and show how key predistribution and a key-ID sensitive "going down" routing protocol help increase the robustness and reliability of the connected backbone

Proceedings ArticleDOI
20 Apr 2006
TL;DR: This paper proposed an improved protocol called "LEACH-Mobile" for mobile nodes to declare the membership of a cluster as they move, and to confirm whether a mobile sensor node is able to communicate with a specific cluster head within a time slot allocated in TDMA schedule.
Abstract: In mobility-centric environments, wireless sensor networks are designed to accommodate energy efficiency, dynamic self-organization and mobility. In typical applications of wireless sensor networks, fixed sensor nodes are mixed with mobile sensor nodes in 'hot areas'. Also, as they move, network topology needs to be reconstructed by reacting upon the mobility of sensor nodes quickly. In this paper we proposed an improved protocol called "LEACH-Mobile" for mobile nodes to declare the membership of a cluster as they move, and to confirm whether a mobile sensor node is able to communicate with a specific cluster head within a time slot allocated in TDMA schedule. The LEACH-Mobile protocol achieved definite improvement in data transfer success rate as mobile nodes increased compared to the non-mobility centric LEACH protocol.

Journal ArticleDOI
TL;DR: A unified geometric interpretation for wireless quality-aware routing metrics is provided and empirical observations of a real-world wireless mesh network suggest that mETX and ENT could achieve a 50% reduction in the average packet loss rate compared with ETX.
Abstract: This paper considers the problem of selecting good paths in a wireless mesh network. It is well-known that picking the path with the smallest number of hops between two nodes often leads to poor performance, because such paths tend to use links that could have marginal quality. As a result, quality-aware routing metrics are desired for networks that are built solely from wireless radios. Previous work has developed metrics (such as ETX) that work well when wireless channel conditions are relatively static (DeCouto , 2003), but typical wireless channels experience variations at many time-scales. For example, channels may have low average packet loss ratios, but with high variability, implying that metrics that use the mean loss ratio will perform poorly. In this paper, we describe two new metrics, called modified expected number of transmissions (mETX) and effective number of transmissions (ENT) that work well under a wide variety of channel conditions. In addition to analyzing and evaluating the performance of these metrics, we provide a unified geometric interpretation for wireless quality-aware routing metrics. Empirical observations of a real-world wireless mesh network suggest that mETX and ENT could achieve a 50% reduction in the average packet loss rate compared with ETX

Journal ArticleDOI
TL;DR: This work proposes a distributed navigation algorithm for emergency situations that quickly separates hazardous areas from safe areas, and the sensors establish escape paths.
Abstract: In an emergency, wireless network sensors combined with a navigation algorithm could help safely guide people to a building exit while helping them avoid hazardous areas. We propose a distributed navigation algorithm for emergency situations. At normal time, sensors monitor the environment. When the sensors detect emergency events, our protocol quickly separates hazardous areas from safe areas, and the sensors establish escape paths. Simulation and implementation results show that our scheme achieves navigation safety and quick convergence of the navigation directions. We based our protocol on the temporally ordered routing algorithm for mobile ad hoc networks. TORA assigns mobile nodes temporally ordered sequence numbers to support multipath routing from a source to a specific destination node

01 Jan 2006
TL;DR: AODV and OLSR performance in realistic urban scenarios is evaluated under varying metrics such as node mobility and vehicle density, and with varying traffic rates to provide a qualitative assessment of the applicability of the protocols in different vehicular scenarios.
Abstract: A Vehicular Ad Hoc Network (VANET) is an instance of MANETs that establishes wireless connections between cars. In VANETs, routing protocols and other techniques must be adapted to vehicular-specific capabilities and requirements. As many previous works have shown, routing performance is greatly dependent to the availability and stability of wireless links, which makes it a crucial parameter that should not be neglected in order to obtain accurate performance measurements in VANETs. Although routing protocols have already been analyzed and compared in the past, simulations and comparisons have almost always been done considering random motions. But could we assess that those results hold if performed using realistic urban vehicular motion patterns ? In this paper, we evaluate AODV and OLSR performance in realistic urban scenarios. We study those protocols under varying metrics such as node mobility and vehicle density, and with varying traffic rates. We show that clustering effects created by cars aggregating at intersections have remarkable impacts on evaluation and performance metrics. Our objective is to provide a qualitative assessment of the applicability of the protocols in different vehicular scenarios.

Proceedings ArticleDOI
23 Apr 2006
TL;DR: This paper presents a new recovery scheme called Multiple Routing Configurations (MRC), based on keeping additional routing information in the routers, and allows packet forwarding to continue on an alternative output link immediately after the detection of a failure.
Abstract: As the Internet takes an increasingly central role in our communications infrastructure, the slow convergence of routing protocols after a network failure becomes a growing problem. To assure fast recovery from link and node failures in IP networks, we present a new recovery scheme called Multiple Routing Configurations (MRC). MRC is based on keeping additional routing information in the routers, and allows packet forwarding to continue on an alternative output link immediately after the detection of a failure. Our proposed scheme guarantee s recovery in all single failure scenarios, using a single mechanism to handle both link and node failures, and without knowing the root cause of the failure. MRC is strictly connectionless, and assumes only destination based hop-by-hop forwarding. It can be implemented with only minor changes to existing solutions. In this paper we present MRC, and analyze its performance with respect to scalability, backup path lengths, and load distribution after a failure.

Journal ArticleDOI
TL;DR: In this paper, the authors propose a mathematical framework in which security can be precisely defined and routing protocols for mobile ad hoc networks can be proved to be secure in a rigorous manner.
Abstract: Routing is one of the most basic networking functions in mobile ad hoc networks. Hence, an adversary can easily paralyze the operation of the network by attacking the routing protocol. This has been realized by many researchers and several "secure" routing protocols have been proposed for ad hoc networks. However, the security of those protocols has mainly been analyzed by informal means only. In this paper, we argue that flaws in ad hoc routing protocols can be very subtle, and we advocate a more systematic way of analysis. We propose a mathematical framework in which security can be precisely defined and routing protocols for mobile ad hoc networks can be proved to be secure in a rigorous manner. Our framework is tailored for on-demand source routing protocols, but the general principles are applicable to other types of protocols too. Our approach is based on the simulation paradigm, which has already been used extensively for the analysis of key establishment protocols, but, to the best of our knowledge, it has not been applied in the context of ad hoc routing so far. We also propose a new on-demand source routing protocol, called endairA, and we demonstrate the use of our framework by proving that it is secure in our model

Proceedings ArticleDOI
18 Apr 2006
TL;DR: This paper presents a novel anonymous on demand routing scheme for MANETs and identifies a number of problems of previously proposed works and proposes an efficient solution that provides anonymity in a stronger adversary model.
Abstract: Due to the nature of radio transmissions, communications in wireless networks are easy to capture and analyze. Next to this, privacy enhancing techniques (PETs) proposed for wired networks such as the Internet often cannot be applied to mobile ad hoc networks (MANETs). In this paper we present a novel anonymous on demand routing scheme for MANETs. We identify a number of problems of previously proposed works and propose an efficient solution that provides anonymity in a stronger adversary model.