scispace - formally typeset
Search or ask a question
Topic

Routing table

About: Routing table is a research topic. Over the lifetime, 16589 publications have been published within this topic receiving 336842 citations. The topic is also known as: routing information base & RIB.


Papers
More filters
Patent
11 Jul 1996
TL;DR: In this paper, an electronic messaging system which has multiple sites and in which each site is defined by a unique address space and has connectivity to at least one other site, messages are sent by receiving at a first site message routing information from a second site.
Abstract: In an electronic messaging system which has multiple sites, and in which each site is defined by a unique address space and has connectivity to at least one other site, messages are sent by receiving at a first site message routing information from a second site. The message routing information defines routes from the second site to one or more of the plurality of sites. The received message routing information is assimilated into previously known routing information to generate an updated accumulation of routing information. The updated accumulation of routing information is used to route messages to one or more of the plurality of sites. The updated accumulation of routing information may be replicated to still other sites in the messaging system, which in turn assimilate the information into their respective collections of known routing information. This process of receiving, assimilating and replicating may be repeated until each of the sites has substantially the same updated accumulation of routing information.

103 citations

Proceedings ArticleDOI
13 Apr 2008
TL;DR: A parallel SRAM-based multi- pipeline architecture for terabit IP lookup, with a two-level mapping scheme, that can store a core routing table with over 200 K unique routing prefixes using 3.5 MB of memory.
Abstract: Continuous growth in network link rates poses a strong demand on high speed IP lookup engines. While Ternary Content Addressable Memory (TCAM) based solutions serve most of today's high-end routers, they do not scale well for the next-generation. On the other hand, pipelined SRAM- based algorithmic solutions become attractive. Intuitively multiple pipelines can be utilized in parallel to have a multiplicative effect on the throughput. However, several challenges must be addressed for such solutions to realize high throughput. First, the memory distribution across different stages of each pipeline as well as across different pipelines must be balanced. Second, the traffic on various pipelines should be balanced. In this paper, we propose a parallel SRAM-based multi- pipeline architecture for terabit IP lookup. To balance the memory requirement over the stages, a two-level mapping scheme is presented. By trie partitioning and subtrie-to-pipeline mapping, we ensure that each pipeline contains approximately equal number of trie nodes. Then, within each pipeline, a fine-grained node-to-stage mapping is used to achieve evenly distributed memory across the stages. To balance the traffic on different pipelines, both pipelined prefix caching and dynamic subtrie-to-pipeline remapping are employed. Simulation using real-life data shows that the proposed architecture with 8 pipelines can store a core routing table with over 200 K unique routing prefixes using 3.5 MB of memory. It achieves a throughput of up to 3.2 billion packets per second, i.e. 1 Tbps for minimum size (40 bytes) packets.

103 citations

Journal ArticleDOI
TL;DR: In this article, the authors study the performance of a wide array of forwarding strategies, via analysis, extensive simulations and a set of experiments on motes, and find that the product of packet reception rate and the distance improvement towards destination (PRR × d) is a highly suitable metric for geographic forwarding in realistic environments.
Abstract: Recent experimental studies have shown that wireless links in real sensor networks can be extremely unreliable, deviating to a large extent from the idealized perfect-reception-within-range models used in common network simulation tools. Previously proposed geographic routing protocols commonly employ a maximum-distance greedy forwarding technique that works well in ideal conditions. However, such a forwarding technique performs poorly in realistic conditions as it tends to forward packets on lossy links. Based on a recently developed link loss model, we study the performance of a wide array of forwarding strategies, via analysis, extensive simulations and a set of experiments on motes. We find that the product of the packet reception rate and the distance improvement towards destination (PRR × d) is a highly suitable metric for geographic forwarding in realistic environments.

103 citations

Journal ArticleDOI
Junqi Duan1, Dong Yang1, Haoqing Zhu1, Sidong Zhang1, Jing Zhao1 
TL;DR: This paper proposes a trust-aware secure routing framework (TSRF) with the characteristics of lightweight and high ability to resist various attacks and shows with the help of simulations that TSRF can achieve both intended security and high efficiency suitable for WSN-based networks.
Abstract: In recent years, trust-aware routing protocol plays a vital role in security of wireless sensor networks (WSNs), which is one of the most popular network technologies for smart city. However, several key issues in conventional trust-aware routing protocols still remain to be solved, such as the compatibility of trust metric with QoS metrics and the control of overhead produced by trust evaluation procedure. This paper proposes a trust-aware secure routing framework (TSRF) with the characteristics of lightweight and high ability to resist various attacks. To meet the security requirements of routing protocols in WSNs, we first analyze features of common attacks on trust-aware routing schemes. Then, specific trust computation and trust derivation schemes are proposed based on analysis results. Finally, our design uses the combination of trust metric and QoS metrics as routing metrics to present an optimized routing algorithm. We show with the help of simulations that TSRF can achieve both intended security and high efficiency suitable for WSN-based networks.

103 citations

Journal ArticleDOI
TL;DR: This article proposes a coding-aware opportunistic routing mechanism that combines hop-by-hop opportunistic forwarding and localized inter-flow network coding for improving the throughput performance of a WMN.
Abstract: Opportunistic routing is a new routing paradigm that takes advantage of the broadcast characteristic of a wireless channel for data delivery in a wireless mesh network. Network coding has recently emerged as a new coding paradigm that can significantly improve the throughput performance of a WMN. In this article we explore the combination of opportunistic routing and network coding for improving the performance of a WMN. We first review existing opportunistic routing and coding-aware routing protocols, respectively, classify these protocols based on different criteria, and discuss their merits and drawbacks. We then propose a coding-aware opportunistic routing mechanism that combines hop-by-hop opportunistic forwarding and localized inter-flow network coding for improving the throughput performance of a WMN. Through opportunistic forwarding, CORE allows the next-hop node with the most coding gain to continue the packet forwarding. Through localized network coding, CORE attempts to maximize the number of packets that can be carried in a single transmission. Simulation results show that CORE can significantly improve the throughput performance of a WMN as compared with existing protocols.

103 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Server
79.5K papers, 1.4M citations
91% related
Wireless ad hoc network
49K papers, 1.1M citations
91% related
Wireless network
122.5K papers, 2.1M citations
90% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202294
2021119
2020293
2019411
2018493